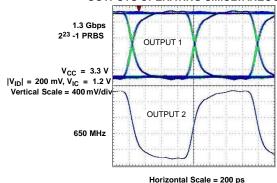


2x2 LVPECL CROSSPOINT SWITCH

FEATURES

- High Speed 2x2 LVPECL Crosspoint Switch
- LVDS Crosspoint Switch Available in SN65LVCP22
- 50 ps (Typ), of Peak-to-Peak Jitter With PRBS = 2²³– 1 Pattern
- Output (Channel-to-Channel) Skew Is 10 ps (Typ), 50 ps (Max)
- Configurable as 2:1 Mux, 1:2 Demux, Repeater or 1:2 Signal Splitter
- Inputs Accept LVDS, LVPECL, and CML Signals
- Fast Switch Time of 1.7 ns (Typ)
- Fast Propagation Delay of 0.75 ns (Typ)
- 16 Lead SOIC and TSSOP Packages
- Operating Temperature: -40°C to 85°C

APPLICATIONS


- Gigabit Ethernet Redundant Transmission Paths
- Gigabit Interface Converters (GBICs)
- Fibre Channel Redundant Transmission Paths
- HDTV Video Routing
- Base Stations
- Protection Switching for Serial Backplanes
- Network Switches/Routers
- Optical Networking Line Cards/Switches
- Clock Distribution

DESCRIPTION

The SN65LVCP23 is a 2x2 LVPECL crosspoint switch. The dual channels incorporate wide common-mode (0 V to 4 V) receivers, allowing for the receipt of LVDS, LVPECL, and CML signals. The dual outputs are LVPECL drivers to provide high-speed operation. The SN65LVCP23 provides a single device supporting 2:2 buffering (repeating), 1:2 splitting, 2:1 multiplexing, 2x2 switching, and LVDS/CML to LVPECL level translation on each channel. The flexible operation of the SN65LVCP23 provides a single device to support the redundant serial bus transmission needs (working protection switching cards) of fault-tolerant switch systems found in optical networking, wireless infrastructure, and data communications systems. TI offers an additional gigabit repeater/translator in the SN65LVDS101.

The SN65LVCP23 uses a fully differential data path to ensure low-noise generation, fast switching times, low pulse width distortion, and low jitter. Output channel-to-channel skew is less than 10 ps (typ) and 50 ps (max) to ensure accurate alignment of outputs in all applications. Both SOIC and TSSOP package options are available.

OUTPUTS OPERATING SIMULTANEOUSLY

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

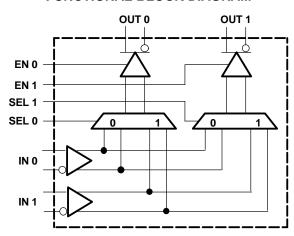
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

PACKAGE DESIGNATOR	PART NUMBER ⁽¹⁾	SYMBOLIZATION
SOIC	SN65LVCP23D	LVCP23
TSSOP	SN65LVCP23PW	LVCP23

(1) Add the suffix R for taped and reeled carrier

PACKAGE DISSIPATION RATINGS

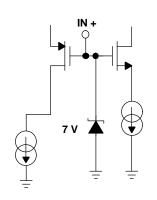

PACKAGE	CIRCUIT BOARD MODEL	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ⁽¹⁾ ABOVE T _A = 25°C	T _A = 85°C POWER RATING
SOIC (D)	High-K ⁽²⁾	1361 mW	13.9 mW/°C	544 mW
TSSOP (PW)	High-K ⁽²⁾	1074 mW	10.7 mW/°C	430 mW

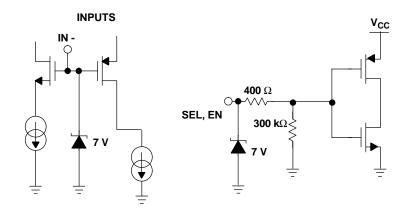
- (1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.
- (2) In accordance with the High-K thermal metric definitions of EIA/JESD51-7.

THERMAL CHARACTERISTICS

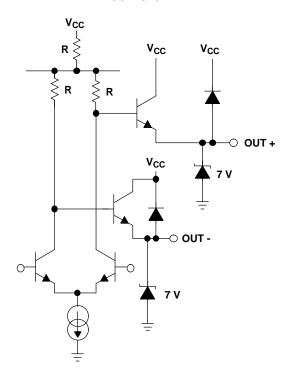
	PARAMETER		TEST CONDITIONS	VALUE	UNITS
0	Junction-to-board thermal resistance	D		15.7	°C/W
θ_{JB} .		PW		22.1	°C/W
0	Junction-to-case thermal resistance	D		26.1	°C/W
θ_{JC}	Junction-to-case thermal resistance	PW		17.3	°C/W
P _D	Device power dissipation	Typical	V _{CC} = 3.3 V, T _A = 25°C, 2 Gbps	165	mW
		Maximum	V _{CC} = 3.6 V, T _A = 85°C, 2 Gbps	234	mW

FUNCTIONAL BLOCK DIAGRAM


CIRCUIT FUNCTION TABLE


		INPU	JTS ⁽¹⁾			OUTP	UTS ⁽¹⁾	LOCIC DIACRAM
IN 0	IN 1	SEL 0	SEL1	EN 0	EN 1	OUT 0	OUT 1	LOGIC DIAGRAM
Х	Х	Х	Х	L	L	L	L	
>100 mV	Х	L	L	Н	L	Н	L	EN 0
<-100 mV	Х	L	L	Н	L	L	L	IN 0 OUT 0
<-100 mV	Х	L	L	Н	Н	L	L	
>100 mV	Х	L	L	Н	Н	Н	Н	IN 1 — OUT 1
>100 mV	Х	L	L	L	Н	L	Н	IN 1 — OUT 1
<-100 mV	Х	L	L	L	Н	L	L	EN 1
>100 mV	Х	L	Н	Н	L	Н	L	
<-100 mV	Х	L	Н	Н	L	L	L	EN 0
<-100 mV	<-100 mV	L	Н	Н	Н	L	L	IN 0 OUT 0
<-100 mV	>100 mV	L	Н	Н	Н	L	Н	
>100 mV	<-100 mV	L	Н	Н	Н	Н	L] N/4 N N N N N N N N N
>100 mV	>100 mV	L	Н	Н	Н	Н	Н	IN 1 OUT 1
Χ	>100 mV	L	Н	L	Н	L	Н	EN 1
Х	<-100 mV	L	Н	L	Н	L	L	
Х	>100 mV	Н	Н	Н	L	Н	L	EN 0
Х	<-100 mV	Н	Н	Н	L	L	L	IN 0 — OUT 0
Χ	<-100 mV	Н	Н	Н	Н	L	L	
Χ	>100 mV	Н	Н	Н	Н	Н	Н	IN 1 OUT 1
Х	>100 mV	Н	Н	L	Н	L	Н	
Χ	<-100 mV	Н	Н	L	Н	L	L	EN 1
Χ	>100 mV	Н	L	Н	L	Н	L	
Χ	<-100 mV	Н	L	Н	L	L	L	EN 0
<-100 mV	<-100 mV	Н	L	Н	Н	L	L	IN 0 OUT 0
<-100 mV	>100 mV	Н	L	Н	Н	Н	L	
>100 mV	<-100 mV	Н	L	Н	Н	L	Н	IN 1 OUT 1
>100 mV	>100 mV	Н	L	Н	Н	Н	Н	
>100 mV	Х	Н	L	L	Н	L	Н	EN 1
<-100 mV	Х	Н	L	L	Н	L	L	

⁽¹⁾ H = High level, L = Low level, Z = High impedance, X = Don't care



EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1)

				UNITS
Supply voltage range, (2)	V _{cc}			-0.5 V to 4 V
CMOS/TTL input voltage	(ENO, EN1, SEL0, SEL1)			-0.5 V to 4 V
Receiver input voltage (IN	N+, IN–)			-0.7 V to 4.3 V
LVPECL driver output vol	ltage (OUT+, OUT-)			-0.5 V to 4 V
Output ourrent	Continuous			50 mA
Output current	Surge			100 mA
Storage temperature rang	је			-65°C to 125°C
Lead temperature 1,6 mn	n (1/16 inch) from case for 10) seconds		235°C
Continuous power dissipa	ation		See D	Dissipation Rating Table
Clastractatic discharge	Human body model (3)	All pins		±5 kV
Electrostatic discharge	Charged-device mode ⁽⁴⁾	All pins		±500 V

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	3	3.3	3.6	V
	Receiver input voltage	0		4	V
	Junction temperature			125	°C
T _A	Operating free-air temperature ⁽¹⁾	-40		85	°C
$ V_{ID} $	Magnitude of differential input voltage	0.1		3	V

⁽¹⁾ Maximum free-air temperature operation is allowed as long as the device maximum junction temperature is not exceeded.

 ⁽²⁾ All voltage values, except differential I/O bus voltages, are with respect to network ground terminals.
 (3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.
 (4) Tested in accordance with JEDEC Standard 22, Test Method C101.

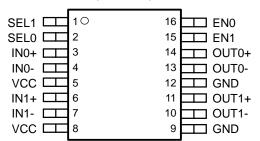
INPUT ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
CMOS/T	TL DC SPECIFICATIONS (EN0, EN1, SEL0, SEL	1)	II.			
V _{IH}	High-level input voltage		2		V _{CC}	V
V_{IL}	Low-level input voltage		GND		0.8	V
I _{IH}	High-level input current	V _{IN} = 3.6 V or 2.0 V, V _{CC} = 3.6 V		±3	±20	μΑ
I _{IL}	Low-level input current	V_{IN} = 0.0 V or 0.8 V, V_{CC} = 3.6 V		±1	±10	μA
V_{CL}	Input clamp voltage	$I_{CL} = -18 \text{ mA}$		-0.8	-1.5	V
LVPECL	OUTPUT SPECIFICATIONS (OUT0, OUT1)					
V_{OH}	Output high voltage		V _{CC} - 1.3		$V_{CC} - 0.85$	V
V_{OL}	Output low voltage	$R_L = 50 \Omega$ to V_{TT} , $V_{TT} = V_{CC} - 2.0 \text{ V}$, See Figure 2	V _{CC} - 2.2		V _{CC} – 1.65	V
$ V_{OD} $	Differential output voltage	111 = 100 2.0 1, 000 1 iguio 2	600	800	1000	mV
Co	Differential output capacitance	$V_I = 0.4 \sin(4E6\pi t) + 0.5 V$		3		pF
RECEIV	ER DC SPECIFICATIONS (IN0, IN1)					
V _{TH}	Positive-going differential input voltage threshold	See Figure 1 and Table 1			100	mV
V_{TL}	Negative-going differential input voltage threshold	See Figure 1 and Table 1	-100			mV
V _{ID(HYS)}	Differential input voltage hysteresis			25		mV
V _{CMR}	Common-mode voltage range	V _{ID} = 100 mV, V _{CC} = 3.0 V to 3.6 V	0.05		3.95	V
	In most assument	V _{IN} = 4 V, V _{CC} = 3.6 V or 0.0 V		±1	±10	
I _{IN}	Input current	V _{IN} = 0 V, V _{CC} = 3.6 V or 0.0 V		±1	±10	μA
C _{IN}	Differential input capacitance	V _I = 0.4 sin (4E6πt) + 0.5 V		1		pF
SUPPLY	CURRENT		•			
I _{CCD}	DC supply current	No load		50	65	mA

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.

SWITCHING CHARACTERISTICS


over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{SET}	Input to SEL setup time	Figure 5	1	0.5		ns
t _{HOLD}	Input to SEL hold time	Figure 5	1.1	0.5		ns
t _{SWITCH}	SEL to switched output	Figure 5		1.7	2.5	ns
t _{PHKL}	Disable time, high-level-to-known LOW	Figure 4		2	2.5	ns
t _{PKLH}	Enable time, known LOW-to-high-level output	Figure 4		2	2.5	ns
t _{LHT}	Differential output signal rise time (20% – 80%) ⁽¹⁾	Figure 3	80	110	220	ps
t _{HLT}	Differential output signal fall time (20% – 80%) ⁽¹⁾	Figure 3	80	110	220	ps
		V_{ID} = 200 mV, 50% duty cycle, V_{CM} = 1.2 V, 650 MHz		15	30	ps
t _{JIT}	Added peak-to-peak jitter	$V_{\rm ID}$ = 200 mV, PRBS = 2^{23} –1 data pattern and K28.5 (0011111010), $V_{\rm CM}$ = 1.2 V at 1.3 Gbps		50	100	ps
t _{Jrms}	Added random jitter (rms)	V _{ID} = 200 mV, 50% duty cycle, V _{CM} = 1.2 V, 650 MHz		0.3	0.5	ps _{RMS}
t _{PLHD}	Propagation delay time, low-to-high-level output ⁽¹⁾	V _{CC} = 3.3 V, T _A = 25°C, See Figure 3	400	750	1100	ps
t _{PHLD}	Propagation delay time, high-to-low-level output ⁽¹⁾	V _{CC} = 3.3 V, T _A = 25°C, See Figure 3	400	750	1100	ps
t _{skew}	Pulse skew (t _{PLHD} - t _{PHLD}) ⁽²⁾	Figure 3		20	100	ps
t _{CCS}	Output channel-to-channel skew, splitter mode	Figure 3		10	50	ps
f _{MAX}	Maximum operating frequency ⁽³⁾		1			GHz

- (1) Input: V_{IC} = 1.2 V, V_{ID} = 200 mV, 50% duty cycle, 1 MHz, t_r/t_f = 500 ps
 (2) t_{skew} is the magnitude of the time difference between the t_{PLHD} and t_{PHLD} of any output of a single device.
 (3) Signal generator conditions: 50% duty cycle, t_r or t_f ≤ 100 ps (10% to 90%), transmitter output criteria: duty cycle = 45% to 55% V_{OD} ≥ 300 mV.

PIN ASSIGNMENTS

D or PW PACKAGE (TOP VIEW)

PARAMETER MEASUREMENT INFORMATION

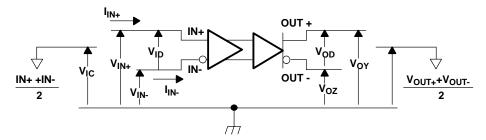


Figure 1. Voltage and Current Definitions

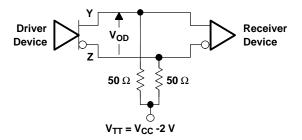
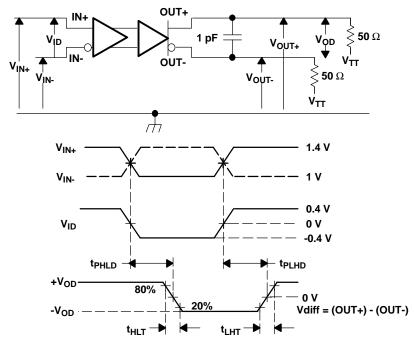
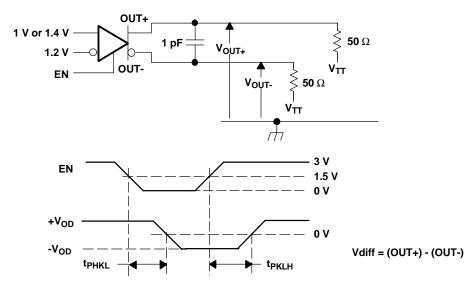



Figure 2. Typical Termination for LVPECL Output Driver



NOTE: All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 0.25$ ns, pulse-repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ±10 ns; C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.

Figure 3. Timing Test Circuit and Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

NOTE: All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse-repetition rate (PRR) = 0.5 Mpps, pulse width = 500 \pm 10 ns, C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.

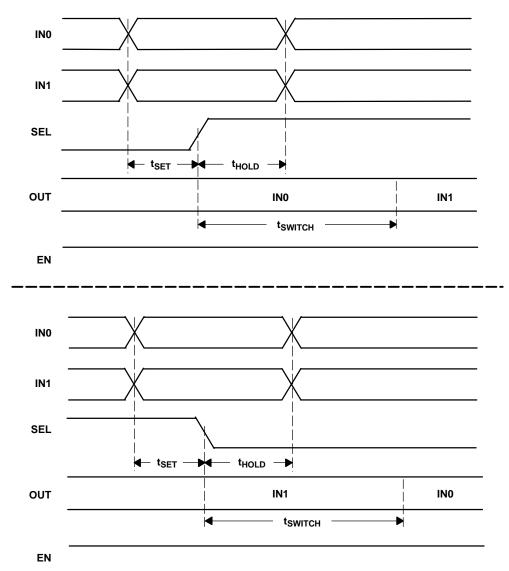

Figure 4. Enable and Disable Time Circuit and Definitions

Table 1. Receiver Input Voltage Threshold Test

APPLIED VOLTAGES		RESULTING DIFFERENTIAL INPUT VOLTAGE	RESULTING COMMON- MODE INPUT VOLTAGE	OUTPUT ⁽¹⁾
V _{IA}	V _{IB}	V _{ID}	V _{IC}	
1.25 V	1.15 V	100 mV	1.2 V	Н
1.15 V	1.25 V	–100 mV	1.2 V	L
4.0 V	3.9 V	100 mV	3.95 V	Н
3.9 V	4. 0 V	–100 mV	3.95 V	L
0.1 V	0.0 V	100 mV	0.05 V	Н
0.0 V	0.1 V	–100 mV	0.05 V	L
1.7 V	0.7 V	1000 mV	1.2 V	Н
0.7 V	1.7 V	-1000 mV	1.2 V	L
4.0 V	3.0 V	1000 mV	3.5 V	Н
3.0 V	4.0 V	-1000 mV	3.5 V	L
1.0 V	0.0 V	1000 mV	0.5 V	Н
0.0 V	1.0 V	-1000 mV	0.5 V	L

(1) H = high level, L = low level

NOTE: t_{SET} and t_{HOLD} times specify that data must be in a stable state before and after mux control switches.

Figure 5. Input to Select for Both Rising and Falling Edge Setup and Hold Times

TYPICAL CHARACTERISTICS

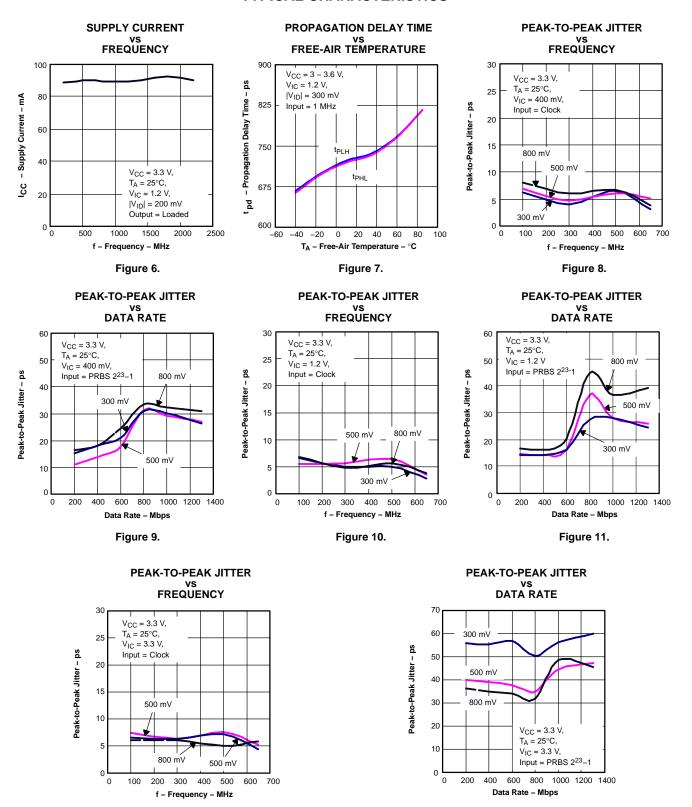


Figure 13.

Figure 12.

TYPICAL CHARACTERISTICS (continued)

DIFFERENTIAL OUTPUT VOLTAGE vs FREQUENCY 900 50 V_{CC} = 3.3 V, T_A = 25°C, VoD - Differential Output Voltage - mV $V_{IC} = 1.2 V$ 40 |V_{ID}| = 200 mV 30 20 Period Jitter - ps Added Random Jitter 10 500 250 500 750 1000 1250 1500 1750 2000 0 f - Frequency - MHz

Figure 14.

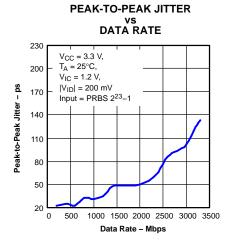


Figure 15.

APPLICATION INFORMATION

TYPICAL APPLICATION CIRCUITS (ECL, PECL, LVDS, etc.)

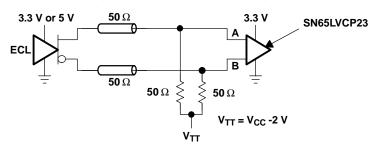


Figure 16. Low-Voltage Positive Emitter-Coupled Logic (LVPECL)

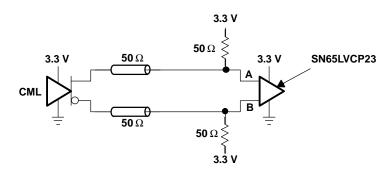


Figure 17. Current-Mode Logic (CML)

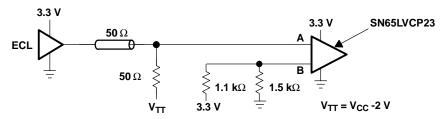


Figure 18. Single-Ended (LVPECL)

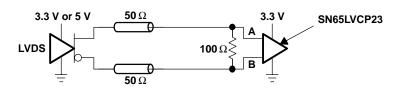


Figure 19. Low-Voltage Differential Signaling (LVDS)

com 12-Sep-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN65LVCP23D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LVCP23DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LVCP23DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LVCP23DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LVCP23PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LVCP23PWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LVCP23PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LVCP23PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

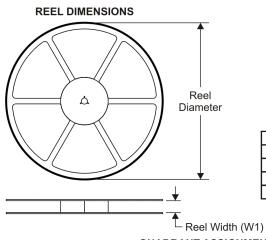
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

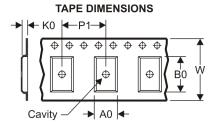
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

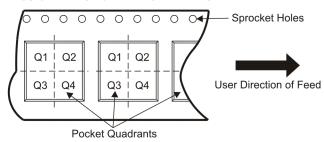
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

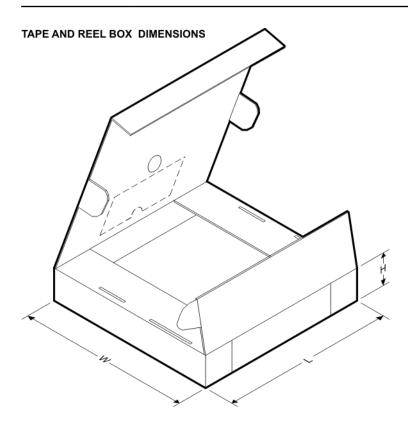

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

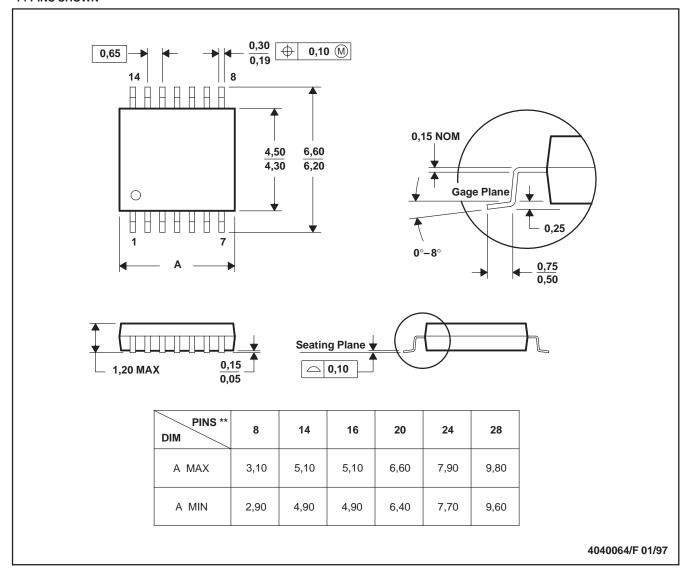

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LVCP23DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN65LVCP23PWR	TSSOP	PW	16	2000	330.0	12.4	6.67	5.4	1.6	8.0	12.0	Q1


*All dimensions are nominal

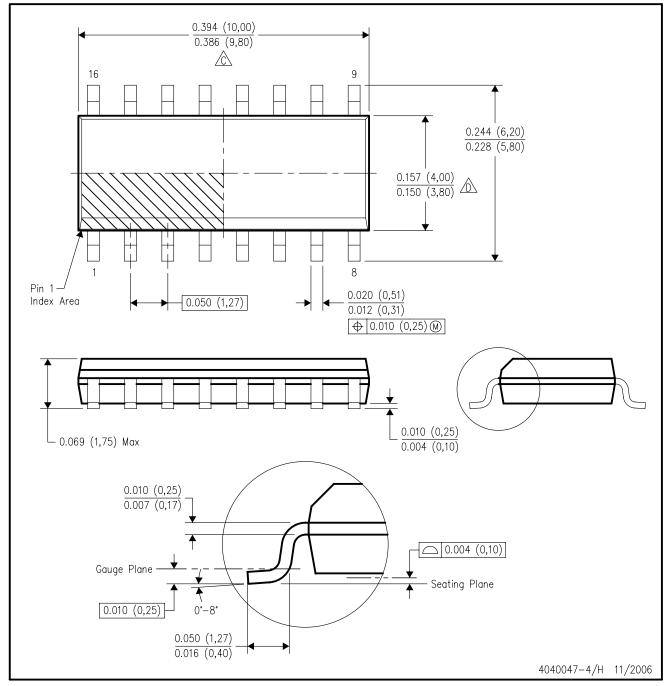
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LVCP23DR	SOIC	D	16	2500	346.0	346.0	33.0
SN65LVCP23PWR	TSSOP	PW	16	2000	346.0	346.0	29.0

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AC.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications				
Audio	www.ti.com/audio			
Automotive	www.ti.com/automotive			
Broadband	www.ti.com/broadband			
Digital Control	www.ti.com/digitalcontrol			
Medical	www.ti.com/medical			
Military	www.ti.com/military			
Optical Networking	www.ti.com/opticalnetwork			
Security	www.ti.com/security			
Telephony	www.ti.com/telephony			
Video & Imaging	www.ti.com/video			
Wireless	www.ti.com/wireless			

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated