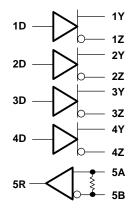


MEMORY STICK™ INTERCONNECT EXTENDER CHIPSET WITH LVDS SN65LVDT14—ONE DRIVER PLUS FOUR RECEIVERS SN65LVDT41—FOUR DRIVERS PLUS ONE RECEIVER

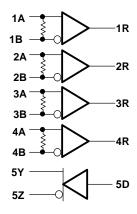
FEATURES

- Integrated 110- Ω Nominal Receiver Line Termination Resistor
- Operates From a Single 3.3-V Supply
- Greater Than 125 Mbps Data Rate
- Flow-Through Pin-Out
- LVTTL Compatible Logic I/Os
- ESD Protection On Bus Pins Exceeds 16 kV
- Meets or Exceeds the Requirements of ANSI/TIA/EIA-644A Standard for LVDS
- 20-Pin PW Thin Shrink Small-Outline Package With 26-Mil Terminal Pitch

APPLICATIONS


- Memory Stick Interface Extensions With Long Interconnects Between Host and Memory Stick™
- Serial Peripheral Interface[™] (SPI) Interface Extension to Allow Long Interconnects Between Master and Slave
- MultiMediaCard™ Interface in SPI Mode
- General-Purpose Asymmetric Bidirectional Communication

DESCRIPTION

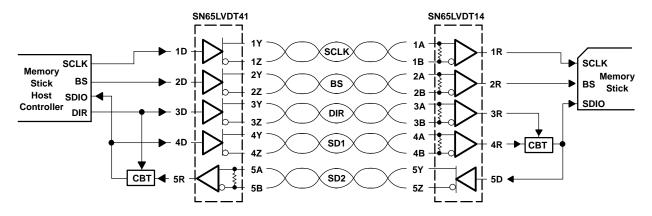

The SN65LVDT14 combines one LVDS line driver with four terminated LVDS line receivers in one package. It is designed to be used at the Memory Stick end of an LVDS based Memory Stick interface extension.

The SN65LVDT41 combines four LVDS line drivers with a single terminated LVDS line receiver in one package. It is designed to be used at the host end of an LVDS based Memory Stick interface extension.

SN65LVDT41 LOGIC DIAGRAM (POSITIVE LOGIC)

SN65LVDT14 LOGIC DIAGRAM (POSITIVE LOGIC)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


Serial Peripheral Interface is a trademark of Motorola. MultiMediaCard is a trademark of MultiMediaCard Association. Memory Stick is a trademark of Sony.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

TYPICAL MEMORY STICK INTERFACE EXTENSION

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1)

		SN65LVDT14, SN65LVDT41	UNIT
Supply voltage range ⁽²⁾	V _{CC}	-0.5 to 4	V
Input voltage range	D or R	-0.5 to 6	V
	A, B, Y, or Z	-0.5 to 4	V
	Human body model ⁽³⁾ , A, B, Y, Z, and GND	±16	KV
Electrostatic discharge	Human body model ⁽³⁾ , all pins	±8	KV
	Charged device model (4), all pins	±500	V
Continuous total power d	issipation	See Dissipation Ra	ating Table
Storage temperature range -65 to 1		-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260		260	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

PACKAGE DISSIPATION RATINGS

PACKAGE	T _A <25°C	OPERATING FACTOR	T _A = 85°C	
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	
PW	774 mW	6.2 mW/°C	402 mW	

⁽²⁾ All voltage values, except differential I/O bus voltages are with respect to network ground terminal.

⁽³⁾ Tested in accordance with JEDEC Standard 22, Test Method A114-A.

⁽⁴⁾ Tested in accordance with JEDEC Standard 22, Test Method C101.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM MA	X UNIT
V _{CC}	Supply voltage	3	3.3 3	.6 V
V _{IH}	High-level input voltage	2		V
V _{IL}	Low-level input voltage		0	.8 V
V _{ID}	Magnitude of differential input voltage	0.1	0	.6 V
V _{IC}	Common-mode input voltage, See Figure 1	$\frac{ V_{ D} }{2}$	$2.4 - \frac{ V_{ D} }{2}$	V
			V _{CC} - 0	.8 V
T _A	Operating free-air temperature	-40	3	35 °C

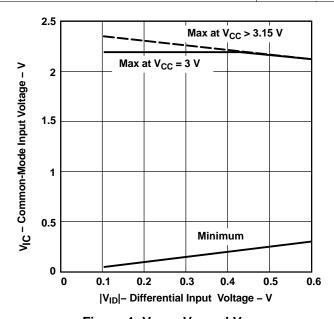


Figure 1. V_{IC} vs V_{ID} and V_{CC}

RECEIVER ELECTRICAL CHARACTERISTICS

over operating free-air temperature range unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
V_{ITH+}	Positive-going differential input voltage threshold	See Figure 2 and Table 1			100	mV
$V_{\text{ITH-}}$	Negative-going differential input voltage threshold	See Figure 2 and Table 1	-100			IIIV
V_{OH}	High-level output voltage	$I_{OH} = -8 \text{ mA}$	2.4			V
V _{OL}	Low-level output voltage	I _{OL} = 8 mA			0.4	V
I	Input current (A or B inputs)	$V_I = 0 \text{ V}$ and $V_I = 2.4 \text{ V}$, other input open			±40	μΑ
I _{I(OFF)}	Power-off input current (A or B inputs)	$V_{CC} = 0 \text{ V}, V_{I} = 2.4 \text{ V}$			±40	μΑ
Ci	Input capacitance, A or B input to GND	$V_I = A \sin 2\pi ft + CV$		5		pF
Z_{t}	Termination impedance	V _{ID} = 0.4 sin2.5E09 t V	88		132	Ω

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.

DRIVER ELECTRICAL CHARACTERISTICS

over operating free-air temperature range unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{OD}	Differential output voltage magnitude	$R_L = 100 \Omega$	247	340	454	
$\Delta V_{OD} $	Change in differential output voltage magnitude between logic states	See Figure 3 and Figure 5	-50		50	mV
V _{OC(SS)}	Steady-state common-mode output voltage		1.125		1.375	V
$\Delta V_{OC(SS)}$	Change in steady-state common-mode output voltage between logic states	See Figure 6	-50		50	mV
V _{OC(PP)}	Peak-to-peak common-mode output voltage			50	150	mV
I _{IH}	High-level input current	V _{IH} = 2 V			20	μA
I _{IL}	Low-level input current	V _{IL} = 0.8 V			10	μA
ı	Chart aircuit autaut aurrent	V_{OY} or $V_{OZ} = 0 V$			±24	mA
los	Short-circuit output current	$V_{OD} = 0 V$			±12	IIIA
I _{O(OFF)}	Power-off output current	$V_{CC} = 1.5 \text{ V}, V_{O} = 2.4 \text{ V}$			±1	μA

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.

DEVICE ELECTRICAL CHARACTERISTICS

over operating free-air temperature range unless otherwise noted

	PARAMETER	1	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
	Cumply ourrent	SN65LVDT14	Driver $R_L = 100 \Omega$, Driver $V_I = 0.8 V$ or 2 V,			25	A
IC	Supply current	SN65LVDT41	Receiver V _I = ±0.4 V			35	mA

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.

RECEIVER SWITCHING CHARACTERISTICS

over operating free-air temperature range unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output		1	2.6	3.8	ns
t _{PHL}	Propagation delay time, high-to-low-level output		1	2.6	3.8	ns
t _r	Output signal rise time		0.15		1.2	ns
t _f	Output signal fall time	C _L = 10 pF, See Figure 4	0.15		1.2	ns
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})			150	600	ps
t _{sk(o)}	Output skew ⁽¹⁾			100	400	ps
t _{sk(pp)}	Part-to-part skew ⁽²⁾				1	ns

⁽¹⁾ $t_{sk(o)}$ is the magnitude of the time difference between the t_{pLH} or t_{pHL} of all the receivers of a single device with all of their inputs connected together.

⁽²⁾ $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

DRIVER SWITCHING CHARACTERISTICS

over operating free-air temperature range unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output		0.9	1.7	2.9	
t _{PHL}	Propagation delay time, high-to-low-level output	$R_L = 100 \Omega, C_L = 10 pF,$	0.9	1.6	2.9	no
t _r	Differential output signal rise time	See Figure 7	0.26		1	ns
t _f	Differential output signal fall time		0.26		1	
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})			150	500	ps
t _{sk(o)}	Output skew ⁽¹⁾	$R_L = 100 \Omega$, $C_L = 10 pF$, See Figure 7		80	150	ps
t _{sk(pp)}	Part-to-part skew ⁽²⁾				1.5	ns

- (1) t_{sk(p)} is the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output.
- (2) $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

PARAMETER MEASUREMENT INFORMATION

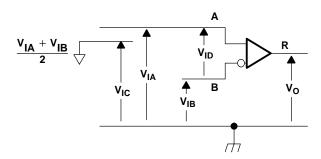


Figure 2. Receiver Voltage Definitions

Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages

APPLIED VOLTAGES		RESULTING DIFFERENTIAL INPUT VOLTAGE	RESULTING COMMON-MODE INPUT VOLTAGE
V_{IA}	V_{IB}	V_{ID}	V _{IC}
1.25 V	1.15 V	100 mV	1.2 V
1.15 V	1.25 V	-100 mV	1.2 V
2.4 V	2.3 V	100 mV	2.35 V
2.3 V	2.4 V	-100 mV	2.35 V
0.1 V	0.0 V	100 mV	0.05 V
0.0 V	0.1 V	-100 mV	0.05 V
1.5 V	0.9 V	600 mV	1.2 V
0.9 V	1.5 V	-600 mV	1.2 V
2.4 V	1.8 V	600 mV	2.1 V
1.8 V	2.4 V	-600 mV	2.1 V
0.6 V	0.0 V	600 mV	0.3 V
0.0 V	0.6 V	-600 mV	0.3 V

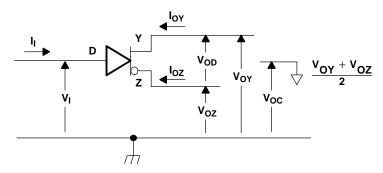
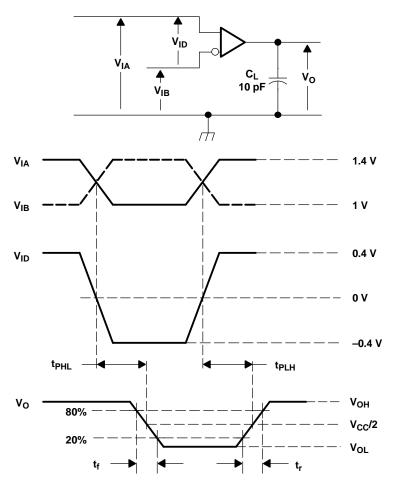
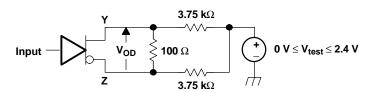
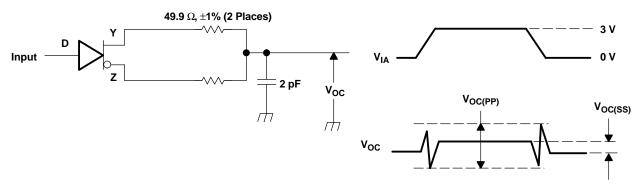
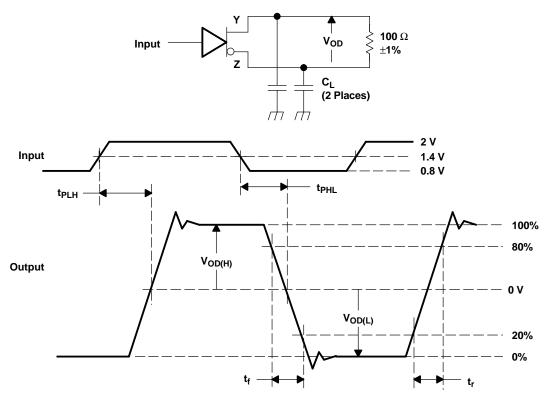



Figure 3. Driver Voltage and Current Definitions

A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 1 Mpps, pulse width = 0.5 \pm 0.05 μ s. C_L includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.

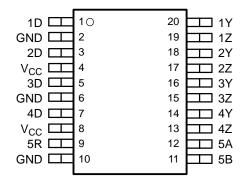
Figure 4. Receiver Timing Test Circuit and Waveforms

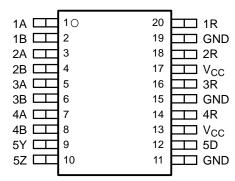

Figure 5. Driver VDO Test Circuit

A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns. C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. The measurement of $V_{OC(PP)}$ is made on test equipment with a -3 dB bandwidth of at least 1 GHz.

Figure 6. Test Circuit and Definitions for the Driver Common-Mode Output Voltage



A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 1 Mpps, pulse width = 0.5 \pm 0.05 μ s. C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.


Figure 7. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal

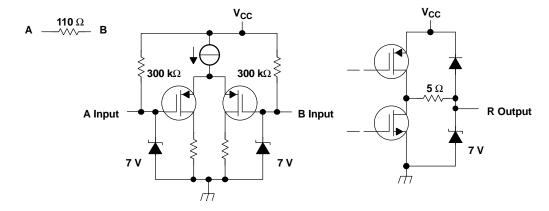
SN65LVDT41 (Marked as LVDT41)

SN65LVDT14 (Marked as LVDT14)

Function Tables

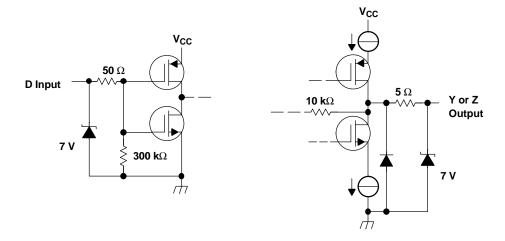
RECEIVER

INPUTS	OUTPUT
$V_{ID} = V_A - V_B$	R
V _{ID} ≥ 100 mV	Н
-100 mV < V _{ID} < 100 mV	?
V _{ID} ≤ – 100 mV	L
Open	н

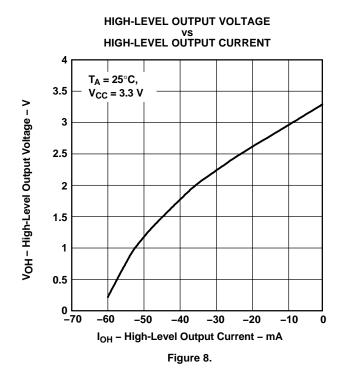

H = high level, L = low level, ? = indeterminate

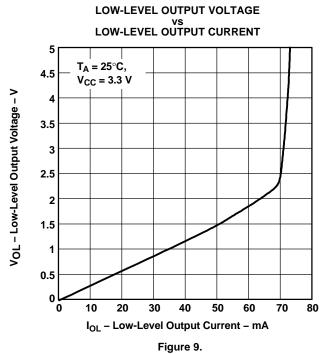
DRIVER

INPUT	OUTPUTS			
D	Υ	Z		
н	Н	L		
L	L	Н		
Open	L	Н		

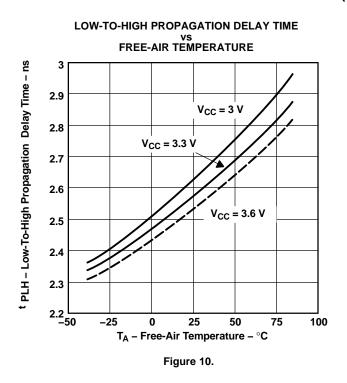

H = high level, L = low level

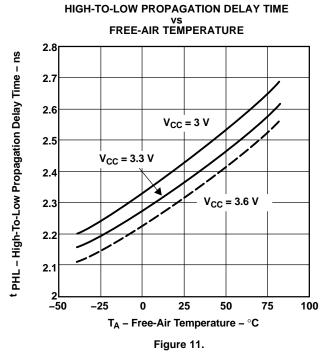
RECEIVER EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

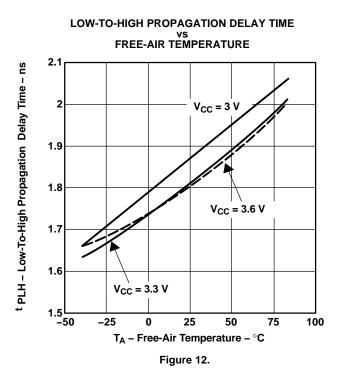


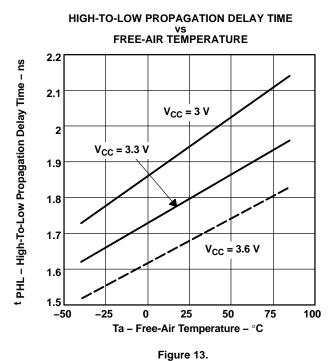

DRIVER EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

TYPICAL CHARACTERISTICS


RECEIVER






RECEIVER (continued)

DRIVER

APPLICATION INFORMATION

EXTENDING THE MEMORY STICK INTERFACE USING LVDS SIGNALING OVER DIFFERENTIAL TRANSMISSION CABLES

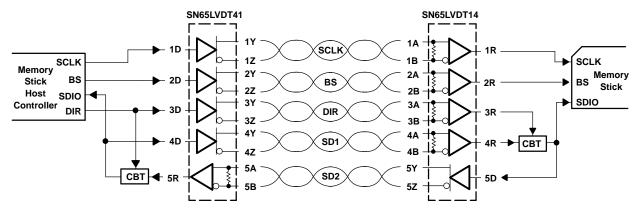


Figure 14. System Level Block Diagram

The Memory Stick signaling interface operates in a master-slave architecture, with three active signal lines. The host (master) supplies a clock (SCLK) and bus-state (BS) signal to control the operation of the system. The SCLK and BS signals are unidirectional (simplex) from the host to the Memory Stick. The serial data input-output (SDIO) signal is a bidirectional (half-duplex) signal used to communicate both control and data information between the host and the Memory Stick. The direction of data control is managed by the host through a combination of BS line states and control information delivered to the Memory Stick.

The basic Memory Stick interface is capable of operating only over short distances due to the single-ended nature of the digital I/O signals. Such a configuration is entirely suitable for compact and portable devices where there is little if any separation between the host and the Memory Stick. In applications where a greater distance is needed between the host controller and the Memory Stick, it is necessary to utilize a different signaling method such as low voltage differential signaling, or LVDS.

LVDS, as specified by the TIA/EIA-644-A standard, provides several benefits when compared to alternative long-distance signaling technologies: low radiated emissions, high noise immunity, low power consumption, inexpensive interconnect cables.

This device pair provides the necessary LVDS drivers and receivers specifically targeted at implementing a Memory Stick interconnect extension. It utilizes simplex links for the SCLK and BS signals, and two simplex links for the SDIO data. The half-duplex SDIO data is split into two simplex streams under control of the host processor by means of the direction (DIR) signal. The DIR signal is also carried from the host to the Memory Stick on a simplex LVDS link.

The switching of the SDIO signal flow direction in the single-ended interfaces is managed by electronic switch devices, identified by the CBT symbol in Figure 14. A suggested CBT device for this application is the SN74CBTLV1G125 from Texas Instruments Incorporated. These devices are available in space saving SOT-23 or SC-70 packages.

com 12-Sep-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN65LVDT14PW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LVDT14PWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LVDT14PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LVDT14PWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LVDT41PW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LVDT41PWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LVDT41PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LVDT41PWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

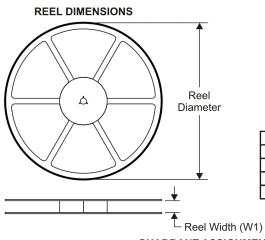
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

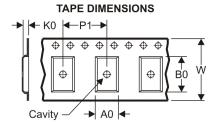
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

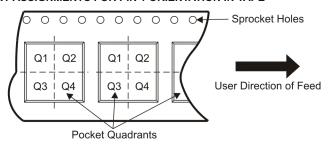
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

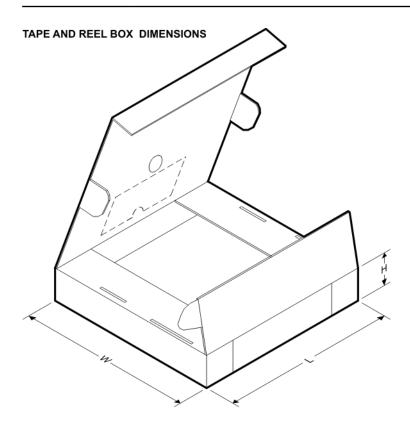

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

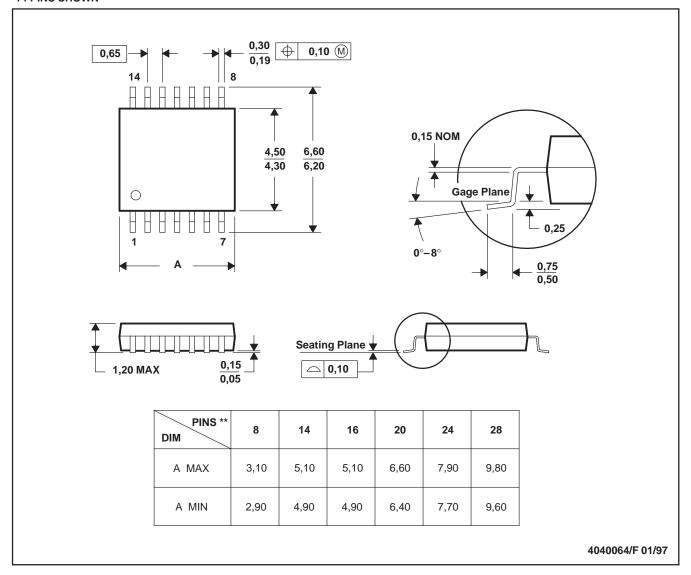

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LVDT14PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN65LVDT14PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN65LVDT41PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN65LVDT41PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LVDT14PWR	TSSOP	PW	20	2000	346.0	346.0	33.0
SN65LVDT14PWR	TSSOP	PW	20	2000	346.0	346.0	33.0
SN65LVDT41PWR	TSSOP	PW	20	2000	346.0	346.0	33.0
SN65LVDT41PWR	TSSOP	PW	20	2000	346.0	346.0	33.0

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated