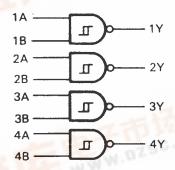
QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS

SDLS047 - DECEMBER 1983 - REVISED MARCH 1988

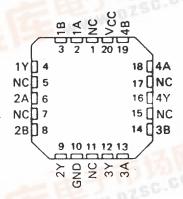
- Operation from Very Slow Edges
- Improved Line-Receiving Characteristics
- High Noise Immunity


description

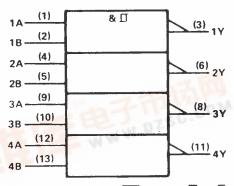
Each circuit functions as a 2-input NAND gate, but because of the Schmitt action, it has different input threshold levels for positive (V_{T+}) and for negative going (V_{T-}) signals.

These circuits are temperature-compensated and can be triggered from the slowest of input ramps and still give clear, jitter-free output signals.

The SN54132, SN54LS132, and SN54S132 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74132, SN74LS132, and SN74S132 are characterized for operation from 0°C to 70°C.


logic diagram (positive logic)

SN54132, SN54LS132, SN54S132 . . . J OR W PACKAGE SN74132 . . . N PACKAGE SN74LS132, SN74S132 . . . D OR N PACKAGE (TOP VIEW)

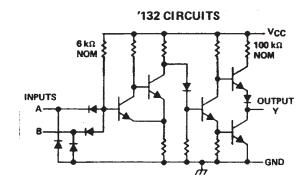

1AC	1	U 14	Dvcc
1B[2	13	4B
1YC	3	12] 4A
2A[4	11]4Y
28□	5	10]3B
2Y[6	9]3A
GND	7	8]3Y

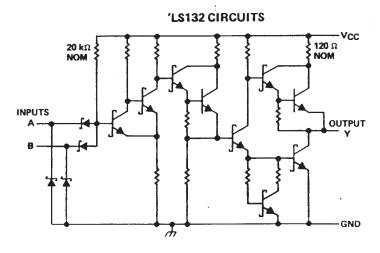
SN54LS132, SN54S132 . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

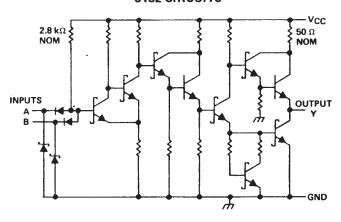
logic symbol†

positive logic: $Y = \overline{AB}$ or $Y = \overline{A} + \overline{B}$


Pin numbers shown are for D, J, N, and W packages.


 $^{^{\}dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS


SDLS047 - DECEMBER 1983 - REVISED MARCH 1988

schematics

'S132 CIRCUITS

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Input voltage: '132, 'S132	5.5 V
	– 55°C to 125°C
Storage temperature range	

NOTE 1: Voltages values are with respect to network ground terminal.

SN54132, SN74132 **QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS**

SDLS047 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

		SN54132			SN74132			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
IOH High-level output current			- 0.8			- 0.8	mA	
IOL Low-level output current			16			16	mA	
TA Operating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDIT	ions [†]	MIN	TYP‡	MAX	UNIT
V _{T+}	V _{CC} = 5 V			1.5	1.7	2	V
V _T	V _{CC} = 5 V			0.6	0.9	1.1	٧
V _{hys} (V _{T+} -V _{T-})	V _{CC} = 5 V			0.4	0.8		٧
ViK	V _{CC} = MIN,	I _I = - 12 mA				- 1.5	V
VOH	V _{CC} = MIN,	V ₁ = 0.6 V,	t _{OH} = - 0.8 mA	2.4	3.4		V
VOL	V _{CC} = MIN,	V ₁ = 2 V,	IOL = 16 mA		0.2	0.4	V
I _{T+}	V _{CC} = 5 V,	V ₁ = V _{T+}			- 0.43		mΑ
'T-	V _{CC} = 5 V,	V1 = VT-			- 0.56		mA
l _l	V _{CC} = MAX,	V ₁ = 5.5 V				1	mA
¹ ін	V _{CC} = MAX,	V ₁ = 2.4 V				40	μА
li L	V _{CC} = MAX,	V _{IL} = 0.4 V			- 0.8	- 1.2	mA
los§	V _{CC} = MAX			- 18		- 55	mA
ГССН	V _{CC} = MAX				15	24	mA
ICCL	V _{CC} = MAX				26	40	mA

 $^{^\}dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
tPLH	Any		$R_1 = 400 \Omega$.	Cı = 15 pF		15	22	ns
^t PHL		'	11 - 400 22,	OL 1341		15	22	ns

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. § Not more than one output should be shorted at a time.

SN54LS132, SN74LS132 **QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS**

SDLS047 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

		S	SN54LS132			SN74LS132			
		MIN	NOM	MAX	MIN	MOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
ЮН	High-level output current			- 0.4			-0.4	mA	
IOL	Low-level output current		***	4			8	mA	
TA	Operating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS†		S	N54LS1	32	SI	N74LS1	32	UNIT	
FANAMETER	1521 COIAD1110IA2.			MIN	TYP‡	MAX	MIN	TYP#	MAX	UNIT
VT+	V _{CC} = 5 V			1.4	1.6	1.9	1.4	1.6	1.9	V
V _T _	V _{CC} = 5 V			0.5	0.8	1	0.5	8.0	1	V
V _{hys} (V _{T+} -V _{T-})	V _{CC} = 5 V		· ·	0.4	0.8		0.4	0.8		٧
VIK	VCC = MIN,	I _I = — 18 mA				- 1.5			- 1.5	V
Voн	VCC = MIN,	V ₁ = 0.5 V,	IOH = - 0.4 mA	2.5	3.4		2.7	3.4		٧
Voi	V _{CC} = MIN,	V _I = 1.9 V	IOL = 4 mA		0.25	0.4		0.25	0.4	V
VOL	A C.C 141114'	V - 1.5 V	IOL = 8 mA					0.35	0.5]
IT+	V _{CC} = 5 V,	V1 = VT+		-	- 0.14		-	- 0.14		mA
¹ T	V _{CC} = 5 V,	Vi = VT_		-	- 0.18		-	- 0.18		mA
l _l	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
ПH	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μА
li L	V _{CC} = MAX,	V _{IL} = 0.4 V				- 0.4			- 0.4	mA
los §	V _{CC} = MAX			- 20		- 100	- 20	-	- 100	mA
Іссн	V _{CC} = MAX				5.9	11		5.9	11	mA
¹ CCL	V _{CC} = MAX				8.2	14		8.2	14	mA

 $^{^{\}dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST COM	NDITIONS	MIN	TYP	MAX	UNIT
tPLH	Anv	v	$R_1 = 2 k\Omega$,	C _I = 15 pF		15	22	ns
tPHL_		·	11 <u>1</u> - 2 K32,	OL - 15 PF		15	22	ns

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$. § Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second

SN54S132, SN74S132 **QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS**

SDLS047 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

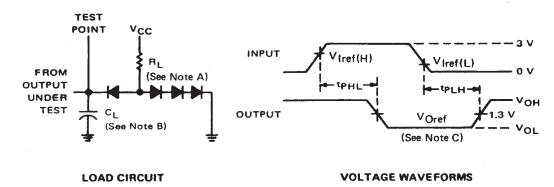
			SN54S132			SN74S132		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
Іон	High-level output current			– 1			– 1	mA
IOL	Low-level output current		-	20			20	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDIT	ionet		SN54S1	32	:	SN74S1	32	UNIT
PARAMETER		TEST CONDIT	IONS.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	ONT
V _{T+}	V _{CC} = 5 V			1.6	1.77	1.9	1.6	1.77	1.9	V
V _T _	V _{CC} = 5 V			1.1	1.22	1.4	1.1	1.22	1.4	٧
V _{hys} (V _{T+} -V _{T-})	V _{CC} = 5 V	_		0.2	0.55		0.2	0.55		v
VIK	V _{CC} = MIN,	I ₁ = - 18 mA				- 1.2			- 1.2	٧
Voн	V _{CC} = MIN,	V _I = 1.1 V,	I _{OH} = - 1 mA	2.5	3.4		2.7	3.4		٧
VOL	V _{CC} = MIN,	V ₁ = 1.9 V,	I _{OL} = 20 mA			0.5			0.5	V
I _{T+}	V _{CC} = 5 V,	V1 = VT+			- 0.9			- 0.9		mA
1T	V _{CC} = 5 V,	VI = VT-			- 1.1			- 1.1		mA
l ₁	V _{CC} = MAX,	V _I = 5,5 V				1			1	mA
Чн	V _{CC} = MAX,	V ₁ = 2.7 V				50			50	μA
111	V _{CC} = MAX,	V _{IL} = 0.5 V				– 2			- 2	mA
los§	V _{CC} = MAX			- 40		- 100	- 40		– 100	mA
¹ CCH	V _{CC} = MAX	-	_		28	44		28	44	mA
ICCL	V _{CC} = MAX				44	68		44	68	mA

 $^{^\}dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
^t PLH	A or B	~	R _L = 280 Ω,	C ₁ = 15 pF		7	10.5	กร
^t PHL	A 01 B	•	11 - 200 34,	O[- 15 pr		8.5	13	ns

^{\$} All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$. \$ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SDLS047 - DECEMBER 1983 - REVISED MARCH 1988

PARAMETER MEASUREMENT INFORMATION

NOTES: A. All diodes are 1N3064 or equivalent.

B. C_L includes probe and jig capacitance.

C. Generator characteristics and reference voltages are:

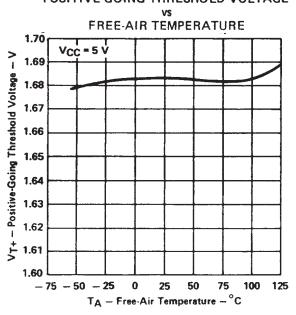
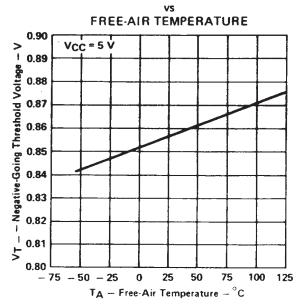
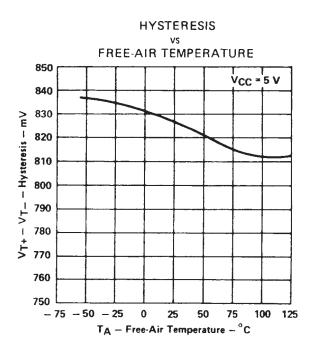
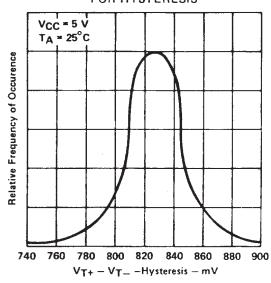

	G	enerator C	haracteris	tics	Reference Voltages				
	Zout	PRR	t _r	tf	V _{I ref(H)}	VI ref(L)	VO ref		
SN54'/SN74'	50	1 MHz	10 ns	10 ns	1.7 V	0.9 V	1.5 V		
SN54LS'/SN74LS'	50	1 MHz	15 ns	6 ns	1.6 V	0.8 V	1.3 V		
'S132	50	1 MHz	2.5 ns	2.5 ns	1.8 V	1.2 V	1.5 V		

FIGURE 1

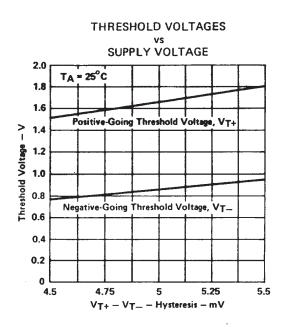


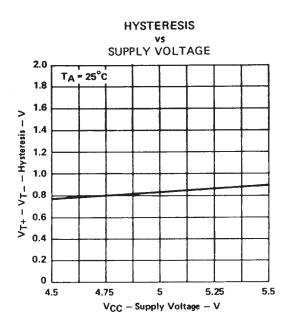

TYPICAL CHARACTERISTICS OF '132 CIRCUITS

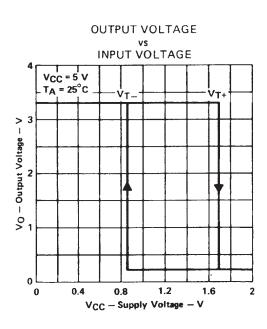
POSITIVE-GOING THRESHOLD VOLTAGE



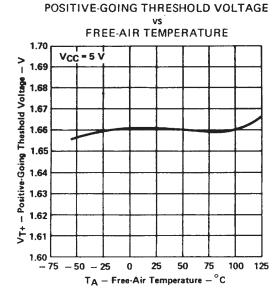
NEGATIVE-GOING THRESHOLD VOLTAGE

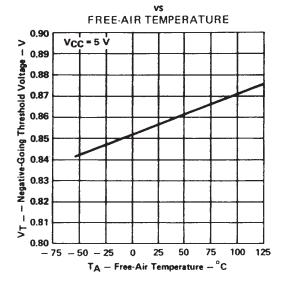



DISTRIBUTION OF UNITS FOR HYSTERESIS

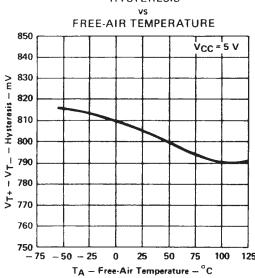


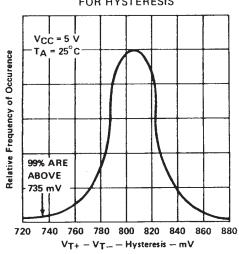
TYPICAL CHARACTERISTICS OF '132 CIRCUITS


 $^{^{\}dagger}$ Data for temperatures below 0° C and 70° C and supply below 4.75 V and above 5.25 V are applicable for SN54132 only.


SN54LS132, SN74LS132 QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS

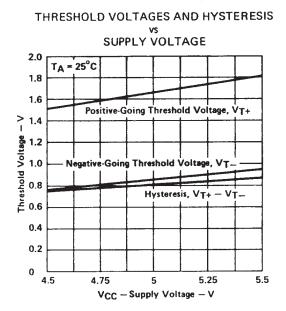
SDLS047 - DECEMBER 1983 - REVISED MARCH 1988

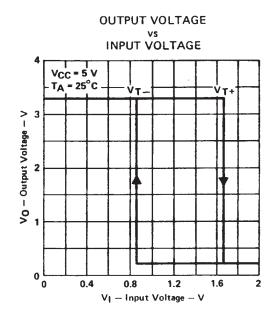

TYPICAL CHARACTERISTICS OF 'LS132 CIRCUITS


NEGATIVE-GOING THRESHOLD VOLTAGE

HYSTERESIS

DISTRIBUTION OF UNITS FOR HYSTERESIS

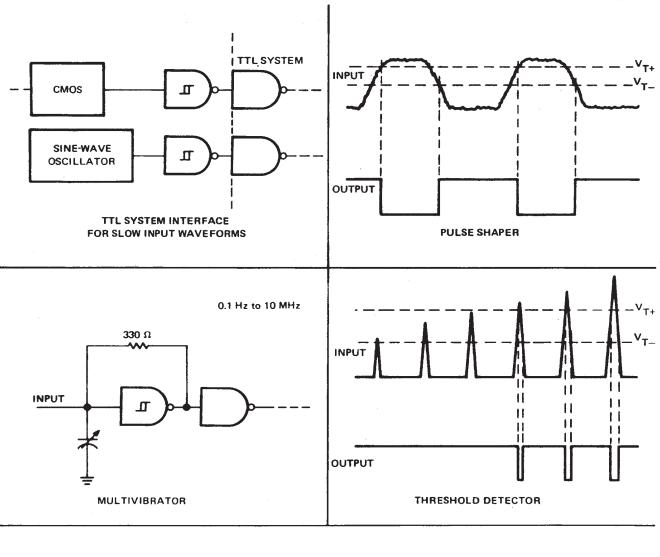


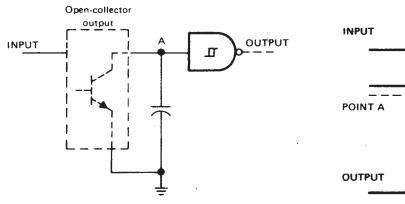

Data for temperatures below 0° C and above 70° C and supply voltages below 4.75 V and above 5.25 V are applicable for SN54LS132 only.

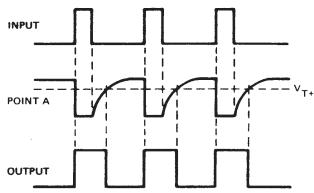
SN54LS132, SN74LS132 QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS

SDLS047 - DECEMBER 1983 - REVISED MARCH 1988

TYPICAL CHARACTERISTICS OF 'LS132 CIRCUITS




 $^{^{\}dagger}$ Data for temperatures below 0° C and above 70° C and supply voltages below 4.75 V and above 5.25 V are applicable for SN54LS132 only.



SDLS047 - DECEMBER 1983 - REVISED MARCH 1988

TYPICAL APPLICATION DATA

PULSE STRETCHER

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated