- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Independent Asynchronous Inputs and Outputs
- 1024 Words $\times 18$ Bits
- Read and Write Operations Can Be Synchronized to Independent System Clocks
- Programmable Almost-Full/Almost-Empty Flag
- Input-Ready, Output-Ready, and Half-Full Flags
- Cascadable in Word Width and/or Word Depth
- Fast Access Times of 15 ns With a $50-\mathrm{pF}$ Load
- High-Output Drive for Direct Bus Interface
- Available in 68-Pin PLCC (FN) and Space-Saving 80-Pin Thin Quad Flat (PN) Packages
- Pin-to-Pin Compatible With SN74ACT7881, SN74ACT7882, and SN74ACT7884

FN PACKAGE
(TOP VIEW)


## PN PACKAGE

(TOP VIEW)


NC - No internal connection

## description

A FIFO memory is a storage device that allows data to be written into and read from its array at independent data rates. The SN74ACT7811 is a $1024 \times 18$-bit FIFO for high speed and fast access times. It processes data at rates up to 40 MHz and access times of 15 ns in a bit-parallel format. Data outputs are noninverting with respect to the data inputs. Expansion is easily accomplished in both word width and word depth.
The SN74ACT7811 has normal input-bus-to-output-bus asynchronous operation. The special enable circuitry adds the ability to synchronize independent read and write (interrupts or requests) to their respective system clock.

The SN74ACT7811 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

## logic symbol $\dagger$


$\dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the FN package.

## functional block diagram



## Terminal Functions

| TERMINAL $\dagger$ |  | I/O | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| NAME | NO. |  |  |
| AF/AE | 33 | 0 | Almost-ful//almost-empty flag. The AF/AE boundary is defined by the almost-full/almost-empty offset value (X). This value can be programmed during reset or the default value of 256 can be used. AF/AE is high when the FIFO contains $(X+1)$ or less words or $(1025-X)$ or more words. AF/AE is low when the FIFO contains between $(X+2)$ and ( $1024-X$ ) words. <br> Programming procedure for AF/AE - The almost-full/almost-empty flag is programmed during each reset cycle. The almost-full/almost-empty offset value $(X)$ is either a user-defined value or the default of $X=256$. Instructions to program AF/AE using both methods are as follows: <br> User-defined X <br> Step 1: Take $\overline{\text { DAF }}$ from high to low. <br> Step 2: If $\overline{\text { RESET }}$ is not already low, take $\overline{\text { RESET }}$ low. <br> Step 3: With $\overline{\mathrm{DAF}}$ held low, take $\overline{\mathrm{RESET}}$ high. This defines the AF/AE using $X$. <br> Step 4: To retain the current offset for the next reset, keep $\overline{D A F}$ low. <br> Default X <br> To redefine AF/AE using the default value of $X=256$, hold $\overline{\mathrm{DAF}}$ high during the reset cycle. |
| $\overline{\text { DAF }}$ | 27 | 1 | Define almost full. The high-to-low transition of $\overline{\mathrm{DAF}}$ stores the binary value of data inputs as the almost-full/almost-empty offset value (X). With $\overline{\mathrm{DAF}}$ held low, a low pulse on $\overline{\text { RESET }}$ defines the AF/AE flag using $X$. |
| D0-D17 | 26-19, 17, 15-7 | 1 | Data inputs for 18 -bit-wide data to be stored in the memory. Data lines D0-D8 also carry the almost-full/almost-empty offset value (X) on a high-to-low transition of the DAF. |
| HF | 36 | 0 | Half-full flag. HF is high when the FIFO contains 513 or more words and is low when it contains 512 or less words. |
| IR | 35 | 0 | Input-ready flag. IR is high when the FIFO is not full and low when the device is full. During reset, IR is driven low on the rising edge of the second WRTCLK pulse. IR is then driven high on the rising edge of the second WRTCLK pulse after RESET goes high. After the FIFO is filled and IR is driven low, IR is driven high on the second WRTCLK pulse after the first valid read. |
| OE | 2 | 1 | Output enable. The data-out (Q0-Q17) outputs are in the high-impedance state when OE is low. OE must be high before the rising edge of RDCLK to read a word from memory. |
| OR | 66 | 0 | Output-ready flag. OR is high when the FIFO is not empty and low when it is empty. During reset, OR is set low on the rising edge of the third RDCLK pulse. OR is set high on the rising edge of the third RDCLK pulse to occur after the first word is written into the FIFO. OR is set low on the rising edge of the first RDCLK pulse after the last word is read. |
| Q0-Q17 | $\begin{gathered} \hline 38-39,41-42,44, \\ 46-47,49-50, \\ 52-53,55-56, \\ 58-59,61,63-64 \end{gathered}$ | O | Data outputs. The first data word to be loaded into the FIFO is moved to Q0-Q17 on the rising edge of the third RDCLK pulse to occur after the first valid write. The RDEN1 and RDEN2 inputs do not affect this operation. Following data is unloaded on the rising edge of RDCLK when RDEN1, RDEN2, OE, and the OR are high. |
| RDCLK | 5 | 1 | Read clock. Data is read out of memory on a low-to-high transition RDCLK if OR, OE, and RDEN1 and RDEN2 control inputs are high. RDCLK is a free-running clock and functions as the synchronizing clock for all data transfers out of the FIFO. OR is also driven synchronously with respect to RDCLK. |
| RDEN1, RDEN2 | $\begin{aligned} & \hline 4 \\ & 3 \end{aligned}$ | I | Read enable. RDEN1 and RDEN2 must be high before a rising edge on RDCLK to read a word out of memory. RDEN1 and RDEN2 are not used to read the first word stored in memory. |
| $\overline{\text { RESET }}$ | 1 | 1 | A reset is accomplished by taking $\overline{\text { RESET }}$ low and generating a minimum of four RDCLK and WRTCLK cycles. This ensures that the internal read and write pointers are reset and OR, HF, and IR are low and AF/AE is high. The FIFO must be reset upon power up. With $\overline{\text { DAF at a low level, a low }}$ pulse on RESET defines the AF/AE status flag using the almost-full/almost-empty offset value (X), where $X$ is the value previously stored. With $\overline{\mathrm{DAF}}$ at a high level, a low-level pulse on $\overline{\text { RESET }}$ defines the AF/AE flag using the default value of $\mathrm{X}=256$. |

$\dagger$ Terminals listed are for the FN package.

## Terminal Functions (Continued)

| TERMINAL† |  | I/O |  |
| :---: | :---: | :---: | :--- |
| NAME | NO. | I | Write clock. Data is written into memory on a low-to-high transition of WRTCLK if IR, WRTEN1, and <br> WRTEN2 are high. WRTCLK is a free-running clock and functions as the synchronizing clock for all <br> data transfers into the FIFO. IR is also driven synchronously with respect to WRTCLK. |
| WRTCLK | 29 | 30 | I |
| WRTEN1, <br> WRTEN2 | Write enables. WRTEN1 and WRTEN2 must be high before a rising edge on WRTCLK for a word <br> to be written into memory. WRTEN1 and WRTEN2 do not affect the storage of the <br> almost-full/almost-empty offset value (X). |  |  |

$\dagger$ Terminals listed are for the FN package.


Figure 1. Reset Cycle: Define AF/AE Using the Value of $X$


Figure 2. Reset Cycle: Define AF/AE Using the Default Value


Figure 3. Write Cycle

WRTCLK


WRTEN1


WRTEN2




Figure 4. Read Cycle

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$


$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | UNIT |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage | 4.5 | 5.5 |
| $\mathrm{~V}_{\mathrm{IL}}$ | Low-level input voltage | 2 | V |
| $\mathrm{IOH}_{\mathrm{OH}}$ | High-level output current | V |  |
| $\mathrm{IOL}_{\mathrm{OL}}$ | Low-level output current | 0.8 | V |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | -8 | mA |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER | TEST CONDITIONS |  | MIN | TYP $\ddagger$ | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{IOH}=-8 \mathrm{~mA}$ | 2.4 |  |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{IOL}=16 \mathrm{~mA}$ |  |  | 0.5 | V |
| I | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0 V |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| IOZ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or 0 V |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| ICC§ | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ or 0 V |  |  |  | 400 | $\mu \mathrm{A}$ |
|  | One input at 3.4 V , | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 1 | mA |
| $\mathrm{C}_{i}$ | $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  |  | 4 |  | pF |
| $\mathrm{C}_{0}$ | $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  |  | 8 |  | pF |

$\ddagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ I CC tested with outputs open
timing requirements (see Figures 1 through 8)


[^0]switching characteristics over recommended operating free-air temperature range (see Figures 9 and 10)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$ |  |  |  |  |  |  |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 'ACT7811-15 |  |  | 'ACT7811-18 |  | 'ACT7811-20 |  | 'ACT7811-25 |  |  |
|  |  |  | MIN | TYP | MAX | MIN | MAX | MIN | MAX | MIN | MAX |  |
| $f_{\text {max }}$ | WRTCLK or RDCLK |  | 40 |  |  | 35 |  | 28.5 |  | 16.7 |  | MHz |
| tpd | RDCLK $\uparrow$ | Any Q | 4 | 12 | 15 | 4 | 18 | 4 | 20 | 4 | 25 | ns |
| $t_{\text {pd }}{ }^{\text {t }}$ |  |  |  | 10.5 |  |  |  |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{pd}}$ | WRTCLK $\uparrow$ | IR | 2 |  | 10 | 2 | 12 | 2 | 14 | 2 | 16 | ns |
| tpd | RDCLK $\uparrow$ | OR | 2 |  | 10 | 2 | 12 | 2 | 14 | 2 | 16 | ns |
|  | WRTCLK个 | AF/AE | 6 |  | 20 | 6 | 22 | 6 | 24 | 6 | 26 | ns |
| tpd | RDCLK $\uparrow$ |  | 6 |  | 20 | 6 | 22 | 6 | 24 | 6 | 26 |  |
| tPLH | WRTCLK $\uparrow$ | HF | 6 |  | 19 | 6 | 21 | 6 | 23 | 6 | 25 | ns |
| tPHL | RDCLK $\uparrow$ |  | 6 |  | 19 | 6 | 21 | 6 | 23 | 6 | 25 |  |
| tPLH | $\overline{\text { RESET }} \downarrow$ | AF/AE | 3 |  | 19 | 3 | 21 | 3 | 23 | 3 | 25 | ns |
| tPHL |  | HF | 4 |  | 21 | 4 | 23 | 4 | 25 | 4 | 27 |  |
| $\mathrm{t}_{\text {en }}$ | OE | Any Q | 2 |  | 11 | 2 | 11 | 2 | 11 | 2 | 11 | ns |
| $\mathrm{t}_{\text {dis }}$ |  |  | 2 |  | 14 | 2 | 14 | 2 | 14 | 2 | 14 |  |

$\dagger$ This parameter is measured with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (see Figure 5).
operating characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

|  | PARAMETER | TEST CONDITIONS | TYP | UNIT |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {pd }}$ | Power dissipation capacitance per 1K bits | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{f}=5 \mathrm{MHz}$ | 65 | pF |

## TYPICAL CHARACTERISTICS



Figure 5

## TYPICAL CHARACTERISTICS

TYPICAL POWER DISSIPATION CAPACITANCE
VS
SUPPLY VOLTAGE


Figure 6

## calculating power dissipation

The maximum power dissipation ( $\mathrm{P}_{\mathrm{T}}$ ) of the SN74ACT7811 can be calculated by:

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{V}_{\mathrm{CC}} \times\left[\mathrm{I}_{\mathrm{CC}}+\left(\mathrm{N} \times \Delta \mathrm{I}_{\mathrm{CC}} \times \mathrm{dc}\right)\right]+\Sigma\left(\mathrm{C}_{\mathrm{pd}} \times \mathrm{V}_{\mathrm{CC}}^{2} \times \mathrm{f}_{\mathrm{i}}\right)+\Sigma\left(\mathrm{C}_{\mathrm{L}} \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{o}}\right)
$$

where:

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{CC}} & =\text { power-down ICC maximum } \\
\mathrm{N} & =\text { number of inputs driven by a TTL device } \\
\Delta \mathrm{I}_{\mathrm{CC}} & =\text { increase in supply current } \\
\mathrm{dc} & =\text { duty cycle of inputs at a TTL high level of } 3.4 \mathrm{~V} \\
\mathrm{C}_{\mathrm{pd}} & =\text { power dissipation capacitance } \\
\mathrm{C}_{\mathrm{L}} & =\text { output capacitive load } \\
\mathrm{f}_{\mathrm{i}} & =\text { data input frequency } \\
\mathrm{f}_{\mathrm{O}} & =\text { data output frequency }
\end{array}
$$

## APPLICATION INFORMATION

## expanding the SN74ACT7811

The SN74ACT7811 is expandable in width and depth. Expanding in word depth offers special timing considerations:

After the first data word is loaded into the FIFO, the word is unloaded and the output-ready flag (OR) output goes high after $(\mathrm{N} \times 3)$ read-clock (RDCLK) cycles, where N is the number of devices used in depth expansion.

After the FIFO is filled, the input-ready flag (IR) output goes low, the first word is unloaded, and the IR flag output is driven high after ( $\mathrm{N} \times 2$ ) write-clock cycles, where N is the number of devices used in depth expansion.


Figure 7. Word-Depth Expansion: 2048 Words $\times 18$ Bits, $\mathbf{N}=2$


Figure 8. Word-Width Expansion: 1024 Words $\times 36$ Bits

## PARAMETER MEASUREMENT INFORMATION



Figure 9. Standard CMOS Outputs


Figure 10. 3-State Outputs (Any Q)

## PACKAGING INFORMATION

| Orderable Device | Status $^{(1)}$ | Package <br> Type | Package <br> Drawing | Pins Package <br> Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN74ACT7811-15FN | OBSOLETE | PLCC | FN | 68 |  | TBD | Call TI | Call TI |
| SN74ACT7811-15PN | OBSOLETE | LQFP | PN | 80 | TBD | Call TI | Call TI |  |
| SN74ACT7811-18FN | OBSOLETE | PLCC | FN | 68 | TBD | Call TI | Call TI |  |
| SN74ACT7811-18FNR | OBSOLETE | PLCC | FN | 68 |  | TBD | Call TI | Call TI |
| SN74ACT7811-18PN | OBSOLETE | LQFP | PN | 80 | TBD | Call TI | Call TI |  |
| SN74ACT7811-20FN | NRND | PLCC | FN | 68 | 18 |  <br> no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR |
| SN74ACT7811-20PN | OBSOLETE | LQFP | PN | 80 | TBD | Call TI | Call TI |  |
| SN74ACT7811-25FN | OBSOLETE | PLCC | FN | 68 | TBD | Call TI | Call TI |  |
| SN74ACT7811-25PN | OBSOLETE | LQFP | PN | 80 | TBD | Call TI | Call TI |  |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine ( Br ) and Antimony (Sb) based flame retardants ( Br or Sb do not exceed $0.1 \%$ by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-018


NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026

## IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

## Products

## Applications

| Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio |
| :--- | :--- | :--- | :--- |
| Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive |
| DSP | dsp.ti.com | Broadband | www.ti.com/broadband |
| Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol |
| Logic | logic.ti.com | Military | www.ti.com/military |
| Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security |
| Low Power Wireless | www.ti.com/lpw | Telephony | www.ti.com/telephony |
|  |  | Video \& Imaging | www.ti.com/video |
|  | Wireless | www.ti.com/wireless |  |

[^1]Copyright © 2006, Texas Instruments Incorporated


[^0]:    $\dagger$ To permit the clock pulse to be utilized for reset purposes

[^1]:    Mailing Address: Texas Instruments
    Post Office Box 655303 Dallas, Texas 75265

