

DGG OR DL PACKAGE

(TOP VIEW)

SCAS315B-NOVEMBER 1993-REVISED MARCH 2005

FEATURES

- Member of the Texas Instruments Widebus™ Family
- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25° C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 > 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

DESCRIPTION

This 16-bit transparent D-type latch is designed for 2.7-V to 3.6-V V_{CC} operation.

The SN74LVC16373 is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. It can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

	(,
_		<u> </u>	l
1 OE	1	48	1LE
1Q1 [2	47	1D1
1Q2 [3	46	1D2
GND [4	45	GND
1Q3	5	44	1D3
1Q4 [6	43	1 D4
v _{cc} [7	42	Vcc
1Q5	8	41	
1Q6 [9	40	1 1D6
GND [10	39	GND
1Q7 [11	38	1D7
1Q8	12	37	1D8
2Q1 [13	36	2D1
2Q2 [14	35	2D2
GND [15	34	GND
2Q3 [16	33	2D3
2Q4 [17	32	2D4
v _{cc} [18	31	Vcc
2Q5 [19	30	2D5
2Q6 [20	29	2D6
GND [21	28	GND
2Q7 [22	27	2D7
2Q8 [23	26	2D8
2 <u>0</u> [24	25	2LE
	L		1

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

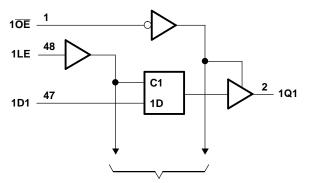
The SN74LVC16373 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

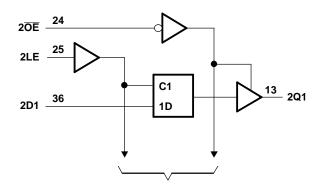
Widebus, EPIC are trademarks of Texas Instruments.

SN74LVC16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS

SCAS315B-NOVEMBER 1993-REVISED MARCH 2005


FUNCTION TABLE (EACH 8-BIT SECTION)

	INPUTS		OUTPUT
ŌĒ	LE	D	Q
L	Н	н	Н
L	Н	L	L
L	L	Х	Q ₀
н	Х	Х	Z


LOGIC SYMBOL⁽¹⁾ 1 10E 1EN 48 1LE C3 24 2EN 2OE 25 C4 2LE 47 2 1D1 3D 1 ▽ 1Q1 3 46 1D2 1Q2 44 5 1D3 1Q3 6 43 1D4 1Q4 41 8 1D5 1Q5 40 9 1D6 1Q6 38 11 1D7 1Q7 37 12 1D8 1Q8 36 13 2D1 4D 2 7 2Q1 35 14 2D2 2Q2 33 16 2D3 2Q3 32 17 2D4 2Q4 30 19 2D5 2Q5 29 20 2D6 2Q6 27 22 2D7 2Q7 26 23 2D8 2Q8

(1) This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

LOGIC DIAGRAM (POSITIVE LOGIC)

To Seven Other Channels

To Seven Other Channels

SCAS315B-NOVEMBER 1993-REVISED MARCH 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾	-0.5	4.6	V	
Vo	Output voltage range ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V_{O} < 0 or V_{O} > V_{CC}		±50	mA
I _O	Continuous output current	$V_{O} = 0$ to V_{CC}		±50	mA
	Continuous current through V _{CC} or GND			±100	mA
	Movimum notice discipation at T $= 55\%$ (in still gir) ⁽⁴⁾	DGG package		0.85	W
	Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) ⁽⁴⁾	DL package		1.2	vv
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. This value is limited to 4.6 V maximum. (2)

(3)

(4) The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		2.7	3.6	V
VIH	High-level input voltage	V _{CC} = 2.7 V to 3.6 V	2		V
VIL	Low-level input voltage	V _{CC} = 2.7 V to 3.6 V		0.8	V
VI	Input voltage		0	V_{CC}	V
Vo	Output voltage		0	V_{CC}	V
	High lovel output ourrent	V _{CC} = 2.7 V		-12	mA
IOH	High-level output current	$V_{CC} = 3 V$		-24	ША
	Low-level output current	$V_{CC} = 2.7 V$		12	mA
IOL	Low-level output current	$V_{CC} = 3 V$		24	ША
$\Delta t / \Delta V$	Input transition rise or fall rate		0	10	ns/V
T _A	Operating free-air temperature		-40	85	°C

(1) Unused control inputs must be held high or low to prevent them from floating.

SN74LVC16373 **16-BIT TRANSPARENT D-TYPE LATCH** WITH 3-STATE OUTPUTS

SCAS315B-NOVEMBER 1993-REVISED MARCH 2005

TEXAS STRUMENTS www.ti.com

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CO	NDITIONS	V _{cc} ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
		I _{OH} = -100 μA		MIN to MAX	V _{CC} - 0.2			
V		1 40 40		2.7 V	2.2			V
V _{OH}		I _{OH} = -12 mA		3 V	2.4			v
		I _{OH} = -24 mA		3 V	2			
		I _{OL} = 100 μA		MIN to MAX			0.2	
V _{OL}		I _{OL} = 12 mA		2.7 V			0.4	V
		I _{OL} = 24 mA		3 V			0.55	
l _l		V _I = V _{CC} or GND		3.6 V			±5	μA
	Data incuts	V _I = 0.8 V	0.14	75			•	
I _{I(hold)}	Data inputs	V ₁ = 2 V		3 V	-75			μA
I _{OZ}		V _O = V _{CC} or GND		3.6 V			±10	μA
I _{CC}		$V_{I} = V_{CC}$ or GND,	l _O = 0	3.6 V			40	μA
ΔI_{CC}		One input at V _{CC} – 0.6 V,	Other inputs at V_{CC} or GND	3 V to 3.6 V			500	μA
Ci		$V_I = V_{CC}$ or GND		3.3 V		3.5		pF
Co		$V_0 = V_{CC}$ or GND		3.3 V		7		pF

(1) For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions. (2) All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}C$.

Timing Requirements

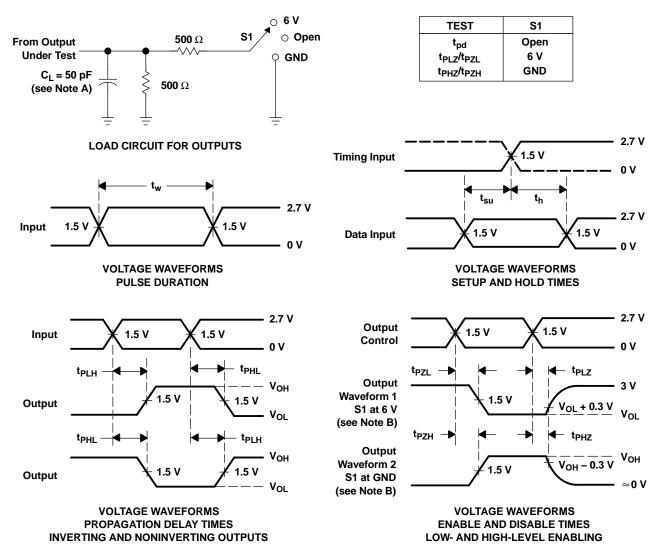
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V_{CC} = 3.3 V ± 0.3 V	V _{CC} = 2.7 V	UNIT	
		MIN MA	MIN MAX		
t _w	Pulse duration, LE high	4	4	ns	
t _{su}	Setup time, data before LE \downarrow	2	2	ns	
t _h	Hold time, data after LE \downarrow	2	2	ns	

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 2 ± 0.3	3.3 V 3 V	V _{CC} = 2.7 V	UNIT
	(INFOT)	(001F01)	MIN	MAX	MIN MAX	
t _{pd}	D	0	1.5 7	8	200	
	LE	Q	2	8	9	ns
t _{en}	ŌĒ	Q	1.5	8	9	ns
t _{dis}	OE	Q	1.5	7	8	ns


Operating Characteristics

T₄ = 25°C

	PARAMETER	TEST CONDITIONS	TYP	UNIT	
<u> </u>	C	Outputs enabled	C = 50 pc f = 10 MHz	20	۶E
C _{pd}	Power dissipation capacitance per latch	Outputs disabled	$C_{L} = 50 \text{ pF}, \text{ f} = 10 \text{ MHz}$	4	pF

SCAS315B-NOVEMBER 1993-REVISED MARCH 2005

NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the ouput is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns. D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
74LVC16373DGGRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC16373DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC16373DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC16373DLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC16373DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC16373DLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

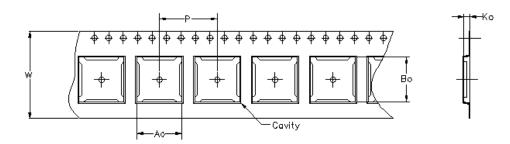
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

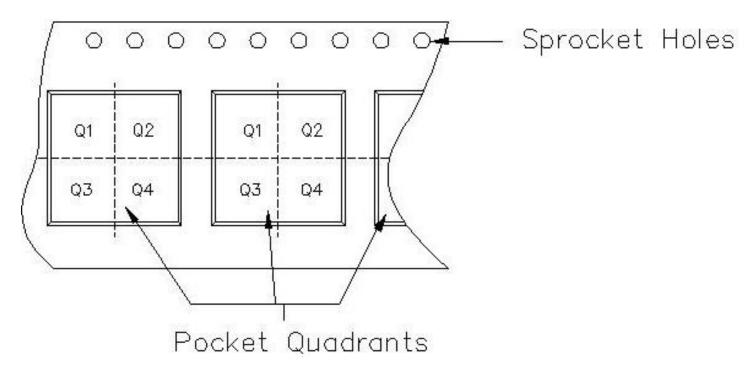
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

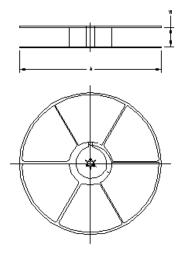
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



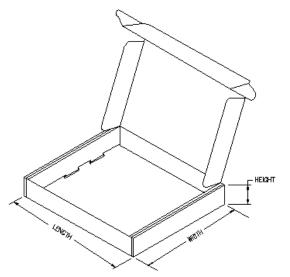
16-Jul-2007

Carrier tape design is defined largely by the component lentgh, width, and thickness.

Ao = Dimension designed to accommodate the component width.										
Bo = Dimension designed to accommodate the component length.										
Ko = Dimension designed to accommodate the component thickness.										
W = Overall width of the carrier tape.										
P = Pitch between successive cavity centers.										


TAPE AND REEL INFORMATION

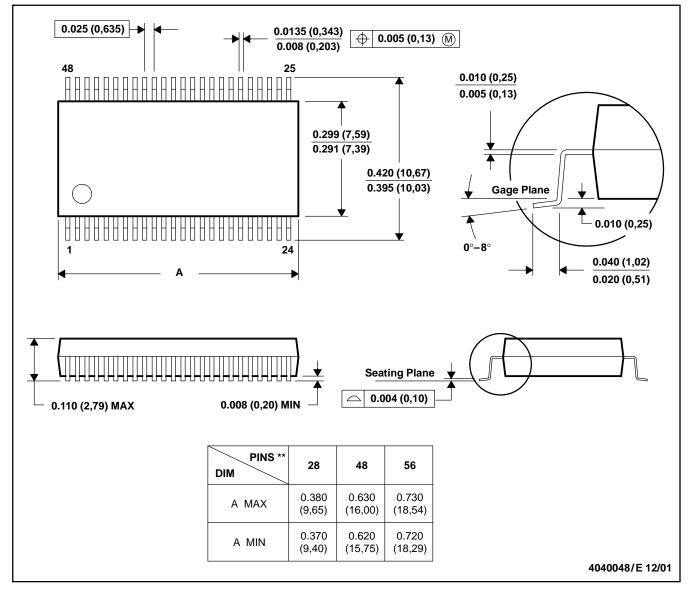
PACKAGE MATERIALS INFORMATION


16-Jul-2007

Device	Package	Pins	Site	Reel Diameter (mm)	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC16373DGGR	DGG	48	MLA	330	24	8.6	15.8	1.8	12	24	Q1
SN74LVC16373DLR	DL	48	MLA	330	32	11.35	16.2	3.1	16	32	Q1

TAPE AND REEL BOX INFORMATION

Device	Package	Pins	Site	Length (mm)	Width (mm)	Height (mm)
SN74LVC16373DGGR	DGG	48	MLA	333.2	333.2	31.75
SN74LVC16373DLR	DL	48	MLA	346.0	346.0	49.0


MECHANICAL DATA

MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

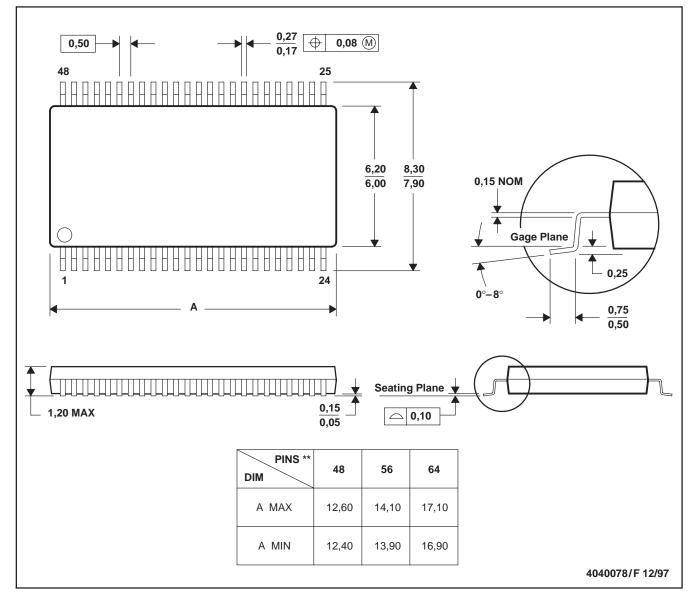
DL (R-PDSO-G**)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
Low Power Wireless	www.ti.com/lpw	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated