SN75LVDM976
SN75LVDM977

9-CHANNEL DUAL-MODE TRANSCEIVERS

FEATURES

- 9 Channels for the Data and Control Paths of the Small Computer Systems Interface (SCSI)
- Supports Single-Ended and Low-Voltage Differential (LVD) SCSI
- CMOS Input Levels ('LVDM976) or TTL Input Levels ('LVDM977) Available
- Includes DIFFSENS Comparators on CDEO
- Single-Ended Receivers Include Noise Pulse Rejection Circuitry
- Packaged in Thin Shrink Small-Outline Package With 20-Mil Terminal Pitch
- Low Disabled Supply Current 7 mA Maximum
- Power-Up/Down Glitch Protection
- Bus is High-Impedance With $\mathrm{V}_{\mathrm{Cc}}=1.5 \mathrm{~V}$
- Pin-Compatible With the SN75976ADGG

High-Voltage Differential Transceiver

DESCRIPTION

The SN75LVDM976 and SN75LVDM977 have nine transceivers for transmitting or receiving the signals to or from a SCSI data bus. They offer electrical compatibility to both the single-ended signaling of X3.277:1996-SCSI-3 Parallel Interface (Fast-20) and the new low-voltage differential signaling method of proposed standard 1142-D SCSI Parallel Interface 2 (SPI-2).
The differential drivers are nonsymmetrical. The SCSI bus uses a dc bias on the line to allow terminated fail safe and wired-OR signaling. This bias can be as high as 125 mV and induces a difference in the high-to-low and low-to-high transition times of a symmetrical driver. In order to reduce pulse skew, an LVD SCSI driver's output characteristics become nonsymmetrical. In other words, there is more assertion current than negation current to or from the driver. This allows the actual differential signal voltage on the bus to be symmetrical about 0 V . Even though the driver output characteristics are nonsymmetrical, the design of the 'LVDM976 drivers maintains balanced signaling. Balanced means that the current that flows in each signal line is nearly equal but opposite in direction and is one of the keys to the low-noise performance of a differential bus.

AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	PACKAGE			
	TSSOP (DGG) CMOS INPUT LEVELS	TSSOP (DGG) TTL INPUTS LEVELS		
$70^{\circ} \mathrm{C}$				SN75LVDM976DGG
:---:				
SN75LVDM976DGGR	${ }^{(1)} .$	SN75LVDM977DGG		
:---:				
SN75LVDM977DGGR				

(1) The R suffix designates a taped and reeled package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

DESCRIPTION (CONTINUED)

The signal symmetry requirements of the LVD-SCSI bus mean you can no longer obtain logical inversion of a signal by simply reversing the differential signal connections. This requires the ability to invert the logic convention through the INV/NON terminal. This input would be a low for SCSI controllers with active-high data and high for active-low data. In either case, the B+ signals of the transceiver must be connected to the SIGNAL+ line of the SCSI bus and the B- of the transceiver to the SIGNAL- line.
The CDEO input incorporates a window comparator to detect the status of the DIFFSENS line of a SCSI bus. This line is below 0.5 V , if using single-ended signals, between 1.7 V and 1.9 V if low-voltage differential, and between 2.4 V and 5.5 V if high-voltage differential. The outputs assume the characteristics of single-ended or LVD accordingly or place the outputs into high-impedance, when HVD is detected. This, and the INV/NON input, are the only differences to the trade-standard function of the SN75976A HVD transceiver.
Two options are offered to minimize the signal noise margins on the interface between the communications controller and the transceiver. The SN75LVDM976 has logic input voltage thresholds of about $0.5 \mathrm{~V}_{\mathrm{CC}}$. The SN75LVDM977 has a fixed logic input voltage threshold of about 1.5 V . The input voltage threshold should be selected to be near the middle of the output voltage swing of the corresponding driver circuit.
The SN75LVDM976 and SN75LVDM977 are characterized for operation over an free-air temperature range of T_{A} $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN75LVDM976
INSTRUMENTS
www.ti.com

LOGIC DIAGRAM (POSITIVE LOGIC)

LOGIC DIAGRAMS AND FUNCTION TABLES

Figure 1. Inverting LVD Transceiver

Figure 2. Inverting Single-Ended Transceiver

Figure 3. Inverting Single-Ended Driver

Figure 4. Inverting LVD Driver

FUNCTION TABLE

INPUTS			OUTPUTS		
$(\mathrm{B}+-\mathrm{B}-)$	$\mathrm{DE} / \overline{\mathrm{RE}}$	A	$\mathrm{B}+$	$\mathrm{B}-$	A
$\mathrm{V}_{\mathrm{ID}} \geq 30 \mathrm{mV}$	L	NA	Z	Z	L
$-30 \mathrm{mV}<\mathrm{V}_{\mathrm{ID}}<30$ mV	L	NA	Z	Z	$?$
$\mathrm{~V}_{\mathrm{ID}}-30 \mathrm{mV}$	L	NA	Z	Z	H
Open circuit	L	NA	Z	Z	$?$
NA	H	L	H	L	Z
NA	H	H	L	H	Z

FUNCTION TABLE

INPUTS			OUTPUTS		
B-	DE/RE	A	B+	B-	A
H	L	NA	L	Z	L
L	L	NA	L	Z	H
Open circuit	L	NA	L	Z	$?$
NA	H	L	L	H	Z
NA	H	H	L	L	Z

FUNCTION TABLE

INPUT	OUTPUTS	
A	B+	B-
L	L	H
H	L	L

FUNCTION TABLE

INPUT	OUTPUTS	
A	B+	B-
L	H	L
H	L	H

FUNCTION TABLE

INPUT	OUTPUTS	
A	B+	B-
L	L	H
H	H	L

FUNCTION TABLE

INPUTS			OUTPUTS		
$(\mathrm{B}+-\mathrm{B}-)$	$\mathrm{DE} / \mathrm{RE}$	A	$\mathrm{B}+$	$\mathrm{B}-$	A
$\mathrm{V}_{\mathrm{ID}} \geq 30 \mathrm{mV}$	L	NA	Z	Z	H
$-30 \mathrm{mV}<\mathrm{V}_{\mathrm{ID}}<30$ mV	L	NA	Z	Z	$?$
$\mathrm{~V}_{\text {ID }} \leq-30 \mathrm{mV}$	L	NA	Z	Z	L
Open circuit	L	NA	Z	Z	$?$
NA	H	L	L	H	Z
NA	H	H	H	L	Z

FUNCTION TABLE

INPUTS			OUTPUTS		
B-	DE/RE	A	B+	B-	A
H	L	NA	L	Z	H
L	L	NA	L	Z	L
Open circuit	L	NA	L	Z	$?$
NA	H	L	L	L	Z
NA	H	H	L	H	Z

FUNCTION TABLE

INPUT	OUTPUTS	
A	B+	B-
L	L	L
H	L	H

Control Inputs

CDE0	$0.7 \mathrm{~V}<\mathrm{V}_{\mathrm{l}}<1.9 \mathrm{~V}$
INV/ $\overline{\mathrm{NON}}$	L
CDE1	L
CDE2	L

(a)

Control Inputs

CDE0	$0.7 \mathrm{~V}<\mathrm{V}_{\mathrm{I}}<1.9 \mathrm{~V}$
INV/NON	L
CDE1	L
CDE2	H

(b)

Control Inputs

(c)

Figure 9. Logic Diagrams

Control Inputs

CDE0	$0.7 \mathrm{~V}<\mathrm{V}_{\text {I }}<1.9 \mathrm{~V}$
INV/NON	L
CDE1	H
CDE2	H

(a)

5DE/RE

Control Inputs

CDE0	$0.7 \mathrm{~V}<\mathrm{V}_{\mathrm{I}}<1.9 \mathrm{~V}$
INV/NON	H
CDE1	L
CDE2	L

(b)

Control Inputs CDEO $\quad 0.7 \mathrm{~V}<\mathrm{V}_{1}<1.9 \mathrm{~V}$ INV/NON CDE1 CDE2
(C)

Figure 10. Logic Diagrams

Figure 11. Logic Diagrams

Control Inputs

CDE0	$0.7 \mathrm{~V}<\mathrm{V}_{\mathrm{I}}<1.9 \mathrm{~V}$
INV/NON	H
CDE1	H
CDE2	H

(a)

(b)

(c)

3 SO

Control Inputs	
CDE0	$\mathrm{V}_{\mathrm{l}}<0.5 \mathrm{~V}$
INV/NON	L
CDE1	H
CDE2	L

(a)

2A 2B-

3B-

(b)

Figure 12. Logic Diagrams
(c)

$$
\begin{array}{cc}
\text { CDEO } & \mathrm{V}_{\mathbf{l}}<0.5 \mathrm{~V} \\
\text { INV/NON } & \mathrm{H} \\
\text { CDE1 } & \mathrm{L} \\
\text { CDE2 } & \mathrm{L}
\end{array}
$$

(a)

Control Inputs

(b)

Figure 13. Logic Diagrams

2 S

3 S

4A

5 S

(c)

Control Inputs	
CDE0	$\mathrm{V}_{1}>2.5 \mathrm{~V}$
INV/NON	X
CDE1	X
CDE2	X

Figure 14. Logic Diagrams

INPUT AND OUTPUT EQUIVALENT SCHEMATIC DIAGRAMS

SN75LVDM976
www.ti.com

Terminal Functions

TERMINAL		'LVDM976 Logic Level	'LVDM977 Logic	I/O	Terminat ion	DESCRIPTION
NAME	NO.					
1A-9A	$\begin{aligned} & 4,6,8,10 \\ & 19,21,23 \\ & 25,27 \end{aligned}$	CMOS	TTL	I/O	Pullup	1A-9A carry data to and from the communication controller.
1B-9B-	$\begin{aligned} & 29,31,33 \\ & 35,37,46 \\ & 48,50,52 \end{aligned}$	LVD or TTL	LVD or TTL	I/O	None	1B- to 9B- are the signals to and from the data bus. When INV/NON is low, the logic sense is the opposite that of the A input (inverted). When $I N V / \overline{N O N}$ is high, the logic sense is the same as the A input (noninverted).
$1 \mathrm{~B}+-9 \mathrm{~B}+$	$\begin{aligned} & 30,32,34, \\ & 36,38,47 \\ & 49,51,53 \end{aligned}$	LVD or GND	LVD or GND	I/O	None	When in the LVD mode, 1B+-9B+ are signals to or from the data bus and follow the same logic sense as the A input when INV/NON is low (noninverted). The logic sense is opposite that of the A input (inverted) when INV/NON is high. When in single-ended mode, these terminals become a ground connection through a transistor and do not switch.
CDEO	54	Trinary	Trinary	Input	None	CDEO is the common driver enable 0 . With the driver enabled and the CDE0 input less than 0.5 V , the driver output is single-ended mode. With the driver enabled and the CDE0 input between 0.7 V and 1.9 V the driver output is LVD mode. All drivers are disabled when the input is greater than 2.4 V .
CDE1	55	CMOS	TTL	Input	Pulldown	CDE1 is the common driver enable 1 . When CDE1 is high, drivers 1-4 are enabled
CDE2	56	CMOS	TTL	Input	Pulldown	CDE2 is the common driver enable 2. When CDE2 is high, drivers 5 to 8 are enabled.
$\begin{aligned} & \text { 1DE/RE - } \\ & \text { 9DE/RE } \end{aligned}$	$\begin{aligned} & 5,7,9,11 \\ & 20,22,24 \\ & 26,28 \end{aligned}$	CMOS	TTL	Input	Pulldown	1DE/ $\overline{\mathrm{RE}}-9 \mathrm{DE} / \overline{\mathrm{RE}}$ are direction controls that transmit data to the bus when it is high and CDEO is below 2.2 V . Data is received from the bus when 1DE/RE-9DE/RE, CDE1, and CDE2 are low.
GND	$\begin{aligned} & 2,3,13,14 \\ & 15,16,17 \\ & 40,41,42 \\ & 43,44 \end{aligned}$	NA	NA	Power	NA	GND is the circuit ground.
INV/NON	1	CMOS	CMOS	Input	Pullup	A high-level input to INV/ $\overline{N O N}$ inverts the logic to and from the A terminals. (i.e., the voltage at A terminal and the corresponding Bterminal are in phase.)
V_{CC}	$\begin{aligned} & 12,18,39 \\ & 45 \end{aligned}$	NA	NA	Power	NA	Supply voltage

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

V_{CC}		Supply voltage range ${ }^{(2)}$	
V_{I}	Input voltage range	$(\mathrm{A}, \mathrm{INV} / \overline{\mathrm{NON}})$	UNIT
	(DE/RE, B+, B-, CDE0, CDE1, CDE2)	-0.5 V to 7 V	
Continuous total power dissipation			-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\mathrm{~T}_{\text {stg }}$	Storage temperature range,	See Dissipation Rating Table	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds			

[^0]
DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5} \mathbf{5}^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING
DGG	978 mW	$10.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	492 mW

RECOMMENDED OPERATING CONDITIONS (see Figure 15)

			MIN	NOM MAX	UNIT
V_{CC}	Supply voltage		4.75	$5 \quad 5.25$	V
	ge	SN75LVDM976	$0.7 \mathrm{~V}_{\mathrm{CC}}$		V
$V_{\text {IH }}$	High-level input volage	SN75LVDM977	2		V
		SN75LVDM976		$0.3 \mathrm{~V}_{\text {CC }}$	V
	Low-level input voltage	SN75LVDM977		0.8	
$\left\|\mathrm{V}_{\text {ID }}\right\|$	Differential input voltage	Differential receiver	0.03	3.6	V
$\mathrm{V}_{\text {IC }}$	Common-mode input volta		0.7	1.8	V
$\mathrm{V}_{\mathrm{OD} \text { (bias) }}$	Differential output voltage bias	Differential	100	125	mV
	High-level output curr	Single-ended driver		7	
	-level output current	Receiver		2	mA
	Low-level output current	Single-ended driver		48	mA
	Low-level output current	Receiver		2	mA
Z_{L}	Differential load impedanc		40	65	Ω
$\mathrm{T}_{\text {A }}$	Operating free-air tempera		0	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN TYP ${ }^{(1)}$ MAX	UNIT
I_{H}	High-level input current	CDE1 and CDE2		50	$\mu \mathrm{A}$
		INV/NON		50	
	Low-level input current	CDE1 and CDE2		50	$\mu \mathrm{A}$
		INV/NON		50	
	Supply current		Disabled	7	mA
			LVD drivers enabled, No load	26	
			Single-ended drivers enabled, No load	10	
			LVD receivers enabled, No load	26	
			Singled-ended receivers enabled, No load	7	
	Input capacitance	Bus terminal	$\mathrm{V}_{1}=0.2 \sin (2 \pi(1 \mathrm{E} 06) \mathrm{t})+0.5 \pm 0.01 \mathrm{~V}$	9.5	pF
$\Delta \mathrm{C}_{\mid}$Difference in input capacitance between $\mathrm{B}+$ and $\mathrm{B}-$				0.2	

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DIFFSENS (CDE0) RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP(MAX	UNIT
			0.5	0.6	0.7
$\mathrm{~V}_{\text {IT1 }}$	Input threshold voltage		1.9	2.1	2.4
$\mathrm{~V}_{\text {IT2 }}$	Input threshold voltage				
I_{1}	Input current	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 2.7 \mathrm{~V}$	± 1	$\mu \mathrm{~A}$	
$\mathrm{I}_{\text {(OFF) }}$	Power-off input current	$\mathrm{V}_{\mathrm{CC}}=0,0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 2.7 \mathrm{~V}$			

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

LVD DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT	
$\mathrm{V}_{\mathrm{OD}(\mathrm{H})}$	Driver differential high-level output voltage		$\begin{aligned} & \mathrm{V}_{(1)}=0.96 \mathrm{~V}, \mathrm{~V}_{1(2)}=0.53 \mathrm{~V}, \\ & \text { See Figure } 16 \end{aligned}$	270	460	780	mV	
			$0.69\left\|\mathrm{~V}_{\mathrm{OD}(L)}\right\|+50$		$1.45\left\|\mathrm{~V}_{\mathrm{OD}(\mathrm{L})}\right\|-65$			
			$\begin{aligned} & \mathrm{V}_{(1)=1}=1.96 \mathrm{~V}, \mathrm{~V}_{1(2)}=1.53 \mathrm{~V}, \\ & \text { See Figure } 16 \end{aligned}$	270	500	780		
			$0.69\left\|\mathrm{~V}_{\mathrm{OD}(\mathrm{L})}\right\|+50$		$1.45\left\|\mathrm{~V}_{\mathrm{OD}(\mathrm{L})}\right\|-65$			
$\mathrm{V}_{\mathrm{OD}(\mathrm{L})}$	Driver differential low-level output voltage			$\begin{aligned} & \mathrm{V}_{1(1)}=0.96 \mathrm{~V}, \mathrm{~V}_{1(2)}=0.53 \mathrm{~V}, \\ & \text { See Figure 16 } \end{aligned}$	260	400	640	mV
			$\begin{aligned} & \mathrm{V}_{1(1)}=1.96 \mathrm{~V}, \mathrm{~V}_{1(2)}=1.53 \mathrm{~V}, \\ & \text { See Figure 16 } \end{aligned}$	260	400	640		
$\mathrm{V}_{\mathrm{OC}(\mathrm{SS})}$	Steady-state common-mode output voltage		$\begin{aligned} & \mathrm{V}_{(1)}=1.41 \mathrm{~V}, \mathrm{~V}_{1(2)}=0.99 \mathrm{~V}, \\ & \text { See Figure 17 } \end{aligned}$	1.1	1.2	1.5	V	
$\Delta \mathrm{V}_{\mathrm{OC}(\mathrm{SS})}$	Change in steady-state common-mode output voltage between logic states				± 50	± 120	mV	
$\mathrm{V}_{\mathrm{OC}(\mathrm{PP})}$	Peak-to-peak common-mode output voltage				80	150	mV	
${ }_{1} \mathrm{H}$	High-level input current	A	$\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}\left({ }^{\prime} 976\right) \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}\left({ }^{(977)}\right.$	7			$\mu \mathrm{A}$	
		DE/RE				50		
$\mathrm{I}_{1 /}$	Low-level input current	A	$\mathrm{V}_{\text {IL }}=1.6 \mathrm{~V}\left({ }^{\prime} 976\right) \mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}\left({ }^{\prime} 977\right)$			30	$\mu \mathrm{A}$	
		DE/RE		8				
$\mathrm{l}_{\text {O(OFF) }}$	Power-off output current		$\mathrm{V}_{\mathrm{CC}}=0,0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.5 \mathrm{~V}$			± 1	$\mu \mathrm{A}$	
$\mathrm{l}_{0 S}$	Short-circuit output current		$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.5 \mathrm{~V}$			± 24	mA	
$\mathrm{l}_{0 z}$	High-impedance output current		$\mathrm{V}_{\mathrm{O}}=0$ or 2.5 V			± 1	$\mu \mathrm{A}$	

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

LVD DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted) (See Figure 16)

	PARAMETER	TEST CONDITIONS		MIN	$\begin{array}{r} \text { TYP(} \\ \text { 1) } \end{array}$	MAX	UNIT
$\mathrm{t}_{\text {PLH }}$	Propagation delay time, low-to-high level output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{12}=0.99 \mathrm{~V}, \end{aligned}$		2.9		8.8	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay time, high-to-low level output			2.9		8.8	ns
t_{r}	Differential output signal rise time			1	3	6	ns
t_{f}	Differential output signal fall time			1	3	6	ns
$\mathrm{t}_{\text {sk(p) }}$	Pulse skew ($\left\|\mathrm{t}_{\text {PHL }}-\mathrm{t}_{\text {PLH }}\right\|$)					3.7	ns
$\mathrm{t}_{\text {sk(lim) }}$	Skew limit ${ }^{(2)}$					5.9	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Propagation delay time, high-level to high-impedance output	$\begin{aligned} & \mathrm{V}_{11}=1.41 \mathrm{~V}, \\ & \text { See Figure } 18 \end{aligned} \quad \mathrm{~V}_{12}=0.99 \mathrm{~V},$				50	ns
$\mathrm{t}_{\text {en }}$	Enable time, receiver to driver					33	ns

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) $t_{\text {sk(lim) }}$ is the maximum delay time difference between any two drivers on any two devices operating at the same supply voltage and the same ambient temperature. SN75LVDM977

SINGLE-ENDED DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	TYP MAX	UNIT
V_{OH}	High-level output voltage	B- output	$\mathrm{I}_{\mathrm{OH}}=-7 \mathrm{~mA}$,	See Figure 19	2	3.24	V
			$\mathrm{l}_{\mathrm{OH}}=0 \mathrm{~mA}$			3.7	V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	B- output	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$		0.5	V
		B+	$\mathrm{l}_{\mathrm{OL}}=-25 \mathrm{~mA}$			-0.5	V
			$\mathrm{I}_{\mathrm{OL}}=25 \mathrm{~mA}$			0.5	
I_{H}	High-level input current	A	$\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}$ ('976), $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}\left({ }^{\prime} 977\right)$		-7		$\mu \mathrm{A}$
		DE/RE				50	
1 IL	Low-level input current	A	$\mathrm{V}_{\mathrm{IL}}=1.6 \mathrm{~V}(' 976)$,	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ ('977)		-30	$\mu \mathrm{A}$
		DE/RE			8		
$\mathrm{l}_{\text {(OFF) }}$	Power-off output current	B-	$\mathrm{V}_{\mathrm{CC}}=0$,	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 5.25 \mathrm{~V}$		± 1	$\mu \mathrm{A}$
$\mathrm{l}_{\text {Oz }}$	High-impedance output current		$\mathrm{V}_{\mathrm{O}}=0$ or V_{CC}			± 1	$\mu \mathrm{A}$

SINGLE-ENDED DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	$\begin{array}{ccc} \mathrm{MI} & \text { TYP(} \\ \mathbf{N} & \text { 1) } & \\ \text { MAX } \end{array}$	UNIT
$\mathrm{t}_{\text {PLH }}$	Propagation delay time, low-to-high level output	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, See Figure 19	2.78 .2	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay time, high-to-low level output		2.7 8.2	ns
tr_{r}	Differential output signal rise time		0.5 4	ns
t_{f}	Differential output signal fall time		0.5 4	ns
$\mathrm{t}_{\text {sk(p) }}$	Pulse skew ($\left\|t_{\text {PHL }}-t_{\text {PLH }}\right\|$)		3.4	ns
$\mathrm{t}_{\text {sk(lim) }}$	Skew limit ${ }^{(2)}$		5.5	ns
$t_{\text {en }}$	Enable time, receiver to driver	See Figure 20	50	ns
$t_{\text {PLZ }}$	Propagation delay time, low-level to high-impedance output		30	ns

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) $\mathrm{t}_{\mathrm{sk}(\mathrm{lim})}$ is the maximum delay time difference between any two drivers on any two devices operating at the same supply voltage and the same ambient temperature.

LVD RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
$\mathrm{V}_{1 T_{+}} \quad$ Positive-going differential input voltage threshold	See Figure 21	30	mV
$\mathrm{V}_{\text {IT- }} \quad$ Negative-going differential input voltage threshold		-30	mV
V_{OH} High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	3.7	V
$\mathrm{V}_{\text {OL }}$ Low-level output voltage	$\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$	0.5	V
I_{1} Input current, B+ or B-	$\mathrm{V}_{1}=0 \mathrm{~V}$ to 2.5 V	± 1	$\mu \mathrm{A}$
${ }^{1}$) (OFF Power-off Input current, B+ or B-	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}=0 \mathrm{~V}$ to 2.5 V	± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H}} \quad$ High-level input current, DE/RE	$\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}$ ('976), $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$ ('977)	50	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }} \quad$ Low-level input current, DE/RE	$\mathrm{V}_{\mathrm{IL}}=1.6 \mathrm{~V}$ ('976), $\quad \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ ('977)	8	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Oz }}$ High-impedance output current	$\mathrm{V}_{\mathrm{O}}=0$ or V_{CC}	± 30	$\mu \mathrm{A}$

LVD RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	$\text { MIN } \begin{array}{lll} \text { TYP(} \\ \text { 1) } \end{array} \text { MAX }$	UNIT
$\mathrm{t}_{\text {PLH }} \quad$ Propagation delay time, low-to-high level output	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, See Figure 21	4.510	ns
$\mathrm{t}_{\text {PHL }} \quad$ Propagation delay time, high-to-low level output		4.510	ns
$\mathrm{t}_{\text {sk(p) }} \quad$ Pulse skew ($\left\|\mathrm{t}_{\mathrm{PHL}}-\mathrm{t}_{\mathrm{PLH}}\right\|$)		3	ns
$\mathrm{t}_{\mathrm{r}} \quad$ Output signal rise time		8	ns
$\mathrm{t}_{\mathrm{f}} \quad$ Output signal fall time		8	ns
$\mathrm{t}_{\text {sk(lim) }}$ Skew limit ${ }^{(2)}$		5.5	ns
$\mathrm{t}_{\mathrm{PHZ}} \quad$ Propagation delay time, high-level to high-impedance output	See Figure 18	42	ns
$\mathrm{t}_{\text {PLZ }} \quad$ Propagation delay time, low-level to high-impedance output		20	ns
$\mathrm{t}_{\mathrm{en}} \quad$ Enable time, driver to receiver		26	ns

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) $\mathrm{t}_{\text {sk(lim) }}$ is the maximum delay time difference between any two drivers on any two devices operating at the same supply voltage and the same ambient temperature.

SINGLE-ENDED RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {IT }+}$	Positive-going input voltage threshold	B-			1.6	1.9	V
$\mathrm{V}_{\text {IT- }}$	Negative-going input voltage threshold	B-		1	1.1		V
V_{OH}	High-level output voltage		$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	3.7	4.6		V
V_{OL}	Low-level output voltage		$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$		0.3	0.5	V
I	Input current	B-	$\mathrm{V}_{1}=0$ to V_{CC}			± 1	$\mu \mathrm{A}$
$\begin{aligned} & \mathbf{I}_{\text {(OFF }} \\ & l^{2} \\ & \hline \end{aligned}$	Power-off Input current	B-	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0$ to 5.25 V			± 1	$\mu \mathrm{A}$
I_{H}	High-level input current	DE/RE	$\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}$ ('976), $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$ ('977)			50	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low-level input current	DE/RE	$\mathrm{V}_{\text {IL }}=1.6 \mathrm{~V}$ ('976), $\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$ ('977)	8			$\mu \mathrm{A}$
l_{Oz}	High-impedance output current		$\mathrm{V}_{\mathrm{O}}=0$ or V_{CC}			-30	$\mu \mathrm{A}$

SINGLE-ENDED RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
$\mathrm{t}_{\text {PLH }}$	Propagation delay time, low-to-high level output	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, See Figure 22	7	12.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay time, high-to-low level output		7	12.5	ns
$\mathrm{t}_{\text {sk(p) }}$	Pulse skew (\|t $\mathrm{PHL}^{-} \mathrm{t}_{\text {PLH }} \mid$)			3.5	ns
t_{r}	Output signal rise time			8	ns
t_{f}	Output signal fall time			8	ns
$\mathrm{t}_{\text {sk(lim) }}$	Skew limit ${ }^{(1)}$			5.5	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Propagation delay time, high-level to high-impedance output	See Figure 20		20	ns
$\mathrm{t}_{\text {PLZ }}$	Propagation delay time, low-level to high-impedance output			30	ns
ten	Enable time, driver to receiver			48	ns

[^1]
PARAMETER MEASUREMENT INFORMATION

Figure 15. Voltage and Current Definitions

A. All input pulses are supplied by a generator having the following characteristics: t_{r} or $t_{f}<1 \mathrm{~ns}$, pulse repetition rate $(P R R)=10 \mathrm{Mpps}$, pulsewidth $=50 \mathrm{~ns} \pm 5 \mathrm{~ns}, \mathrm{Z}_{0}=50 \Omega$.
B. $\quad C_{L}$ includes instrumentation and fixture capacitance within $0,06 \mathrm{~m}$ of the D.U.T.

Figure 16. Differential Output Signal Test Circuit, Timing, and Voltage Definitions

PARAMETER MEASUREMENT INFORMATION (continued)

A. NOTES: . All input pulses are supplied by a generator having the following characteristics: t_{r} or $\mathrm{t}_{\mathrm{f}} \leq 1 \mathrm{~ns}$, pulse repetition rate $(P R R)=10 \mathrm{Mpps}$, pulsewidth $=50 \mathrm{~ns} \pm 5 \mathrm{~ns}, \mathrm{Z}_{\mathrm{o}}=50 \Omega$.
B. $\quad C_{L}$ includes instrumentation and fixture capacitance within $0,06 \mathrm{~m}$ of the D.U.T.
C. The measurement of $\mathrm{V}_{\mathrm{OC}(\mathrm{PP})}$ is made on test equipment with a -3 dB bandwidth of at least 300 MHz .

Figure 17. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

PARAMETER MEASUREMENT INFORMATION (continued)

VOLTAGE WAVEFORMS

A. All input pulses are supplied by a generator having the following characteristics: t_{r} or $t_{f} \leq 1 \mathrm{~ns}$, pulse repetition rate $(P R R)=1 \mathrm{Mpps}$, pulsewidth $=500 \mathrm{~ns} \pm 50 \mathrm{~ns}, \mathrm{Z}_{\mathrm{o}}=50 \Omega$.
B. $\quad C_{L}$ includes instrumentation and fixture capacitance within $0,06 \mathrm{~m}$ of the D.U.T.

Figure 18. LVD Transceiver Enable and Disable Time Test Circuit and Definitions

PARAMETER MEASUREMENT INFORMATION (continued)

A. All input pulses are supplied by a generator having the following characteristics: t_{r} or $t_{f}<1 \mathrm{~ns}$, pulse repetition rate $(P R R)=10 \mathrm{Mpps}$, pulsewidth $=50 \mathrm{~ns} \pm 5 \mathrm{~ns}, \mathrm{Z}_{\mathrm{o}}=50 \Omega$.
B. $\quad C_{L}$ includes instrumentation and fixture capacitance within $0,06 \mathrm{~m}$ of the D.U.T.

Figure 19. Single-Ended Driver Switching Test Circuit

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 20. Single-Ended Transceiver Enable and Disable Timing Measurements

PARAMETER MEASUREMENT INFORMATION (continued)

VOLTAGE WAVEFORMS
A. All input pulses are supplied by a generator having the following characteristics: t_{r} or $\mathrm{t}_{\mathrm{f}} \leq 1 \mathrm{~ns}$, pulse repetition rate $(P R R)=10 \mathrm{Mpps}$, pulsewidth $=50 \mathrm{~ns} \pm 5 \mathrm{~ns}, \mathrm{Z}_{\mathrm{o}}=50 \Omega$.
B. C_{L} includes instrumentation and fixture capacitance within $0,06 \mathrm{~m}$ of the D.U.T.

Figure 21. LVD Receiver Switching Characteristic Test Circuit

PARAMETER MEASUREMENT INFORMATION (continued)

A. All input pulses are supplied by a generator having the following characteristics: t_{r} or $t_{f}<1 \mathrm{~ns}$, pulse repetition rate $(P R R)=10 \mathrm{Mpps}$, pulsewidth $=50 \mathrm{~ns} \pm 5 \mathrm{~ns}$.
B. $\quad C_{L}$ includes instrumentation and fixture capacitance within $0,06 \mathrm{~m}$ of the D.U.T.

Figure 22. Single-Ended Receiver Timing Test Circuit

APPLICATION INFORMATION

Figure 23. Low-Pass Filter for Connecting DIFFSENS to CDEO

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
SN75LVDM976DGG	ACTIVE	TSSOP	DGG	56	35	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM976DGGG4	ACTIVE	TSSOP	DGG	56	35	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM976DGGR	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br})$	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM976DGGRG4	ACTIVE	TSSOP	DGG	56	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM976DL	ACTIVE	SSOP	DL	56	20	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM976DLG4	ACTIVE	SSOP	DL	56	20	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM976DLR	ACTIVE	SSOP	DL	56	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM976DLRG4	ACTIVE	SSOP	DL	56	1000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM977DGG	ACTIVE	TSSOP	DGG	56	35	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM977DGGG4	ACTIVE	TSSOP	DGG	56	35	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM977DGGR	ACTIVE	TSSOP	DGG	56	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM977DGGRG4	ACTIVE	TSSOP	DGG	56	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM977DL	ACTIVE	SSOP	DL	56	20	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM977DLG4	ACTIVE	SSOP	DL	56	20	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM977DLR	ACTIVE	SSOP	DL	56	1000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
SN75LVDM977DLRG4	ACTIVE	SSOP	DL	56	1000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-2-260C-1 YEAR

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	$\mathbf{A 0}(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
SN75LVDM976DGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1
SN75LVDM976DLR	SSOP	DL	56	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1
SN75LVDM977DGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1
SN75LVDM977DLR	SSOP	DL	56	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75LVDM976DGGR	TSSOP	DGG	56	2000	346.0	346.0	41.0
SN75LVDM976DLR	SSOP	DL	56	1000	346.0	346.0	49.0
SN75LVDM977DGGR	TSSOP	DGG	56	2000	346.0	346.0	41.0
SN75LVDM977DLR	SSOP	DL	56	1000	346.0	346.0	49.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

[^0]: (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 (2) All voltage values are with respect to GND unless otherwise noted.

[^1]: (1) $t_{\mathrm{sk}(\mathrm{lim})}$ is the maximum delay time difference between any two drivers on any two devices operating at the same supply voltage and the same ambient temperature.

