
Low Power Half-Duplex RS-485 Transceivers

- +5V Only
- Low Power BiCMOS
- Driver/Receiver Enable
- Slew Rate Limited Driver for Low EMI (SP483)
- Low Power Shutdown Mode (SP481 and SP483)
- RS-485 and RS-422 Drivers/Receivers

DESCRIPTION

The **SP481**, **SP483**, and the **SP485** are a family of half-duplex transceivers that meet the requirements of RS-485 and RS-422. Their BiCMOS design allows low power operation without sacrificing performance. The **SP481** and **SP485** meet the requirements of RS-485 and RS-422 up to 5Mbps. Additionally, the **SP481** is equipped with a low power Shutdown mode. The **SP483** is internally slew rate limited to reduce EMI and can meet the requirements of RS-485 and RS-485 and RS-482 up to 250kbps. The **SP483** is also equipped with a low power Shutdown mode.

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

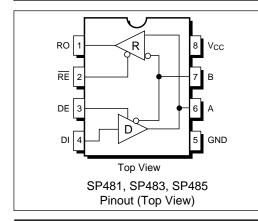
V	±12V
Input Voltages	±12V
Logic	0.3V to (V _{cc} +0.5V)
Drivers	0.3V to (V _{cc} +0.5V)
Receivers	s±15V
Output Voltages	
Logic	-0.3V to (V _{cc} +0.5V)
Drivers	
Receivers	s0.3V to (V _{cc} +0.5V)
Storage Temperature	65°C to +150°C
Power Dissipation	

SPECIFICATIONS

 T_{MN} to T_{MAX} and V_{CC} = 5V ± 5% unless otherwise noted.

I_{MIN} to I_{MAX} and $V_{CC} = 5V \pm 5\%$ unless otherw PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP481/SP483/SP485 DRIVER					
DC Characteristics					
Differential Output Voltage	GND		V _{cc}	Volts	Unloaded; $R = \infty$; see figure 1
Differential Output Voltage	2		V _{CC}	Volts	with load; $R = 50\Omega$; (RS422);
			- 00		see figure 1
Differential Output Voltage	1.5		V _{cc}	Volts	with load; $R = 27\Omega$; (RS485); see figure 1
Change in Magnitude of Driver					
Differential Output Voltage for					
Complimentary States			0.2	Volts	$R = 27\Omega$ or $R = 50\Omega$; see figure 1
Driver Common-Mode					
Output Voltage			3	Volts	R = 27Ω or R = 50Ω ; see figure 1
Input High Voltage	2.0		0.8	Volts Volts	Applies to DE, DI, RE Applies to DE, DI, RE
Input Low Voltage Input Current			±10	μΑ	Applies to DE, DI, RE
Driver Short-Circuit Current			10	μΛ	Applies to DE, DI, RE
$V_{OUT} = HIGH$	35		250	mA	$-7V \le V_0 \le +12V$
$V_{OUT} = LOW$	35		250	mA	$-7V \le V_0 \le +12V$
					0
SP481/SP485 DRIVER					
AC Characteristics	-			Mana	
Maximum Data Rate Driver Input to Output	5 20	30	60	Mbps	RE = 5V, DE = 5V
	20	30	00	ns	t_{PLH} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$; see figures 3 and 6
Driver Input to Output	20	30	60	ns	$t_{PHL}; R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100 \text{pF};$
					see figures 3 and 6
Driver Skew		5	10	ns	see figures 3 and 6,
					t _{SKEW} = t _{DPLH} - t _{DPHL}
Driver Rise or Fall Time	3	15	40	ns	From 10% to 90%; $R_{DIFF} = 54\Omega$,
					$C_{L1} = C_{L2} = 100 \text{pF}$; see figures 3 and 6
Driver Enable to Output High		40	70	ns	$C_L = 100 \text{pF}$; see figures 4 & 7; S_2 closed
Driver Enable to Output Low		40	70 70	ns	$C_L = 100 \text{pF}$; see figures 4 & 7; S_1 closed
Driver Disable Time from Low Driver Disable Time from High		40 40	70	ns ns	$C_L = 15pF$; see figures 2 & 9; S_1 closed $C_L = 15pF$; see figures 2 & 9; S_2 closed
		40	10	115	$C_{L} = 15p_{F}$, see ligules 2 & 9, S_{2} closed
SP481/SP483/SP485 RECEIVE	R				
DC Characteristics					
Differential Input Threshold	-0.2		+0.2	Volts	$-7V \le V_{CM} \le +12V$
Input Hysteresis		10		mV	$V_{CM} = 0V$
Output Voltage High	3.5			Volts	$I_0 = -4mA$, $V_{ID} = +200mV$
Output Voltage Low			0.4	Volts	$I_{O} = +4mA$, $V_{ID} = -200mV$
Three-State (High Impedance)					
Output Current	12	15	±1	μA	$0.4V \le V_0 \le 2.4V; \overline{RE} = 5V$
Input Resistance Input Current (A, B); V _{IN} = 12V	12	C1	+1.0	kΩ mA	$-7V \le V_{CM} \le +12V$ DE = 0V, V _{CC} = 0V or 5.25V, V _{IN} = 12V
Input Current (A, B); $V_{IN} = -7V$			-0.8	mA	$DE = 0V, V_{CC} = 0V \text{ of } 5.25V, V_{IN} = 12V$ $DE = 0V, V_{CC} = 0V \text{ or } 5.25V, V_{IN} = -7V$
Short-Circuit Current	7		95	mA	$\frac{\partial U}{\partial V} \leq V_{CM} \leq V_{CC}$
					U U U U U U U U U U U U U U U U U U U

SPECIFICATIONS (continued)


 T_{MN} to T_{MAX} and $V_{CC} = 5V \pm 5\%$ unless otherwise noted.

T_{MIN} to T_{MAX} and V_{cc} = 5V ± 5% unless otherwise noted.					
PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP481/SP485 RECEIVER					
AC Characteristics					
Maximum Data Rate	5			Mbps	$\overline{RE} = 0V, DE = 0V$
Receiver Input to Output	60	90	200	ns	$t_{PLH}; R_{DIFF} = 54\Omega,$
					t_{PLH} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$; <i>Figures 3 & 8</i>
Receiver Input to Output	60	90	200	ns	$t_{PHL}; R_{DIFF} = 54\Omega,$
		10			
Diff. Receiver Skew It _{PLH} -t _{PHL} I		13		ns	$R_{DIFF} = 54\Omega; C_{L1} = C_{L2} = 100pF;$
Dessiver Enchle to					Figures 3 & 8
Receiver Enable to Output Low		20	50	-	
Receiver Enable to		20	50	ns	$C_{RL} = 15 pF;$ Figures 2 & 9; S_1 closed
Output High		20	50	ns	$C_{RI} = 15pF;$ Figures 2 & 9; S_2 closed
Receiver Disable from Low		20	50	ns	$C_{RL} = 15pF$; Figures 2 & 9; S_2 closed $C_{RI} = 15pF$; Figures 2 & 9; S_1 closed
Receiver Disable from High		20	50	ns	$C_{RL} = 15pF$; Figures 2 & 9; S_1 closed
Receiver Dicable from Fight		20			$\sigma_{\rm RL} = 1001$, $\eta_{\rm gal} = 200000$
SP481					
Shutdown Timing					
Time to Shutdown	50	200	600	ns	$\overline{RE} = 5V, DE = 0V$
Driver Enable from Shutdown				_	
to Output High		40	100	ns	$C_1 = 100 pF;$ See figures 4 & 7; S_2 closed
Driver Enable from Shutdown					
to Output Low		40	100	ns	$C_{L} = 100 pF;$ See figures 4 & 7; S_{1} closed
Receiver Enable from					
Shutdown to Output High		300	1000	ns	$C_L = 15pF$; See figures 2 & 9; S_2 closed
Receiver Enable from			4000		
Shutdown to Output Low		300	1000	ns	$C_L = 15 pF; See figures 2 & 9; S_1 closed$
POWER REQUIREMENTS					
Supply Voltage	+4.75		+5.25	Volts	
Supply Current SP481/485					
No Load		900			\overline{PE} $DI = 0 V(ar) V \rightarrow DE = V$
NO LOAD		900		μA μA	\overline{RE} , DI = 0V or V _{CC} ; DE = V _{CC} RE = 0V, DI = 0V or 5V; DE = 0V
SP483				μΑ	(12 - 0), D = 0, 0, 0, 0, D = 0
No Load		600		μA	\overline{RE} . DI = 0V or V _{oo} : DE = V _{oo}
				μΑ	\overrightarrow{RE} , DI = 0V or V _{CC} ; DE = V _{CC} RE=0V, DI = 0V or 5V; DE = 0V
SP481/SP483				[']	
Shutdown Mode			10	μA	$DE = 0V, \overline{RE} = V_{CC}$
ENVIRONMENTAL AND					
MECHANICAL					
Operating Temperature					
Commercial (_C_)	0		+70	°C	
Industrial (_E_)	-40		+85	°C	
Storage Temperature	-65		+150	°C	
Package					
Plastic DIP (_S)					
NSOIC (_N)					
	1	1		I	1

SP483 AC SPECIFICATIONS

 T_{MIN} to T_{MAX} and V_{CC} = 5V ± 5% unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP483 DRIVER					
AC Characteristics					
Maximum Data Rate	250			kbps	
Driver Input to Output	250	800	2000	ns	$t_{PLH}; R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100 pF;$
	050	000	0000		see figures 3 & 6
Driver Skew	250	800	2000	ns	t_{PHL} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2}^{=} 100 pF$; see figures 3 & 6
Driver Rise and Fall Time		100	800	ns	see figures 3 & 6.
					$t_{SKEW} = t_{DPLH} - t_{DPHL} $
	250		2000	ns	From 10% to 90%; $R_{DIFF} = 54\Omega$,
Driver Enclose to Output High	250		2000		$C_{L1} = C_{L2} = 100 \text{pF}$, see figures 3 & 6
Driver Enable to Output High Driver Enable to Output Low	250		2000	ns ns	$C_{L} = 100pF$; See figures 4 & 7; S ₂ closed $C_{L} = 100pF$; See figures 4 & 7; S ₁ closed
Driver Disable Time from Low	300		3000	ns	$C_1 = 15 \text{pF}$; See figures 4 & 7; S_1 closed
Driver Disable Time from High	300		3000	ns	$C_1 = 15 \text{pF};$ See figures 4 & 7; S_2 closed
5					
SP483 RECEIVER					
AC Characteristics					
Maximum Data Rate	250			kbps	
Receiver Input to Output	250		2000	ns	$t_{PLH}; R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100 pF;$
					Figures 3 & 8
Diff. Receiver Skew It _{PLH} -t _{PHL} I		100		ns	$R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100 pF;$
Receiver Enable to					Figures 3 & 8
Output Low		20	50	ns	C _{pt} = 15pF; <i>Figures 2 & 9;</i> S₁ closed
Receiver Enable to		_			
Output High		20	50	ns	C _{RL} = 15pF; <i>Figures 2 & 9;</i> S ₂ closed
Receiver Disable from Low		20	50	ns	C _{RL} = 15pF; <i>Figures 2 & 9;</i> S ₁ closed
Receiver Disable from High		20	50	ns	$C_{RL} = 15 pF;$ Figures 2 & 9; S_2 closed
SP483					
Shutdown Timing					
Time to Shutdown	50	200	600	ns	$\overline{RE} = 5V, DE = 0V$
Driver Enable from Shutdown		200	000	110	
to Output High			2000	ns	$C_{L} = 100 \text{pF}$; See figures 4 & 7; S_{2} closed
Driver Enable from Shutdown					
to Output Low Receiver Enable from			2000	ns	$C_L = 100 pF$; See figures 4 & 7; S_1 closed
Shutdown to Output High			2500	ns	$C_1 = 15 pF$; <i>See figures 4 & 7;</i> S_2 closed
Receiver Enable from			2000		$ \mathbf{u}_{1} - \mathbf{u}_{2} \mathbf{u}_{2$
Shutdown to Output Low			2500	ns	$C_{L} = 15 pF$; See figures 4 & 7; S_{1} closed

PIN FUNCTION

Pin#	Name	Description
1	RO	Receiver Output.
2	RE	Receiver Output Enable
		Active LOW.
3	DE	Driver Output Enable
		Active HIGH.
4	DI	Driver Input.
5	GND	Ground Connection.
6	А	Driver Output/Receiver Input
		Non-inverting.
7	В	Driver Output/Receiver Input
		Inverting.
8	Vcc	Positive Supply 4.75V <vcc< 5.25v.<="" td=""></vcc<>

SP481/483/485 Low Power Half-Duplex RS485 Transceivers

DESCRIPTION SP481, SP483, SP485

The **SP481**, **SP483**, and **SP485** are half-duplex differential transceivers that meet the requirements of RS-485 and RS-422. Fabricated with a Sipex proprietary BiCMOS process, all three products require a fraction of the power of older bipolar designs.

The RS-485 standard is ideal for multi-drop applications and for long-distance interfaces. RS-485 allows up to 32 drivers and 32 receivers to be connected to a data bus, making it an ideal choice for multi-drop applications. Since the cabling can be as long as 4,000 feet, RS-485 transceivers are equipped with a wide (-7V to +12V) common mode range to accommodate ground potential differences. Because RS-485 is a differential interface, data is virtually immune to noise in the transmission line.

Drivers SP481, SP483, SP485

The driver outputs of the **SP481**, **SP483**, and **SP485** are differential outputs meeting the RS-485 and RS-422 standards. The typical voltage output swing with no load will be 0 volts to +5 volts. With worst case loading of 54Ω across the differential outputs, the drivers can maintain greater than 1.5V voltage levels. The drivers of the **SP481**, **SP483** and **SP485** have an enable control line which is active HIGH. A logic HIGH on DE (pin 5) will enable the differential driver outputs. A logic LOW on DE (pin 5) will tri-state the driver outputs.

The transmitters of the **SP481** and **SP485** will operate up to at least 5Mbps. The **SP483** has internally slew rate limited driver outputs to minimize EMI. The maximum data rate for the **SP483** driver is 250kbps.

Receivers SP481, SP483, SP485

The **SP481**, **SP483**, and **SP485** receivers have differential inputs with an input sensitivity as low as ± 200 mV. Input impedance of the receivers is typically $15k\Omega$ ($12k\Omega$ minimum). A wide common mode range of -7V to +12V allows for large ground potential differences between systems. The receivers of the **SP481**, **SP483** and **SP485** have a tri-state enable control pin. A logic LOW on \overline{RE} (pin 4) will enable the receiver, a logic HIGH on \overline{RE} (pin 4) will disable the receiver.

The receiver for the **SP481** and **SP485** will operate up to at least 5Mbps. The **SP483** receiver is rated for data rates up to 250kbps. The receiver for each of the three devices is equipped with the fail-safe feature. Fail-safe guarantees that the receiver output will be in a HIGH state when the input is left unconnected.

Shutdown Mode SP481/SP483

The **SP481** and **SP483** are equipped with a Shutdown mode. To enable the Shutdown state, both the driver and receiver must be disabled simultaneously. A logic LOW on DE (pin 5) and a logic HIGH on $\overline{\text{RE}}$ (pin 4) will put the **SP481** or **SP483** into Shutdown mode. In Shutdown, supply current will drop to typically 1µA.

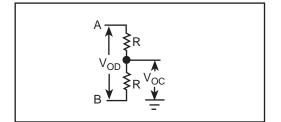


Figure 1. Driver DC Test Load Circuit

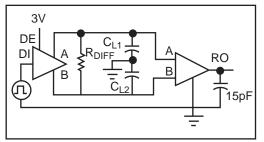


Figure 3. Driver/Receiver Timing Test Circuit

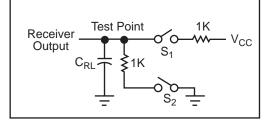


Figure 2. Receiver Timing Test Load Circuit

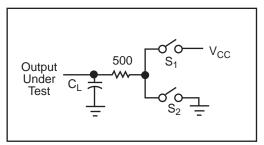


Figure 4. Driver Timing Test Load #2 Circuit

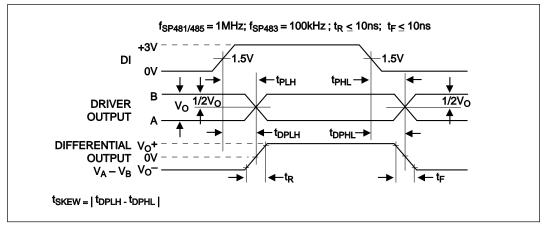


Figure 6. Driver Propagation Delays

Ι	NPUT	S		OUTI	PUTS
RE	DE	DI	LINE CONDITION	В	A
X	1	1	No Fault	0	1
X	1	0	No Fault	1	0
X	0	X	Х	Ζ	Ζ
X	1	X	Fault	Z	Ζ

Table 1. Transmit Function Truth Table

INP	UTS		OUTPUTS
RE	DE	A - B	R
0	0	+0.2V	1
0	0	-0.2V	0
0	0	Inputs Open	1
1	0	Х	Z

Table 2. Receive Function Truth Table

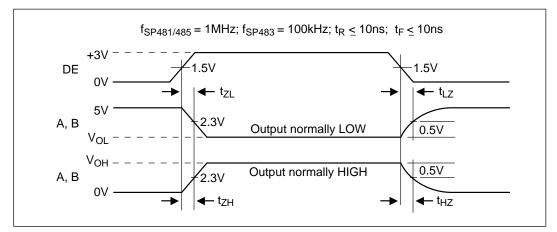


Figure 7. Driver Enable and Disable Times

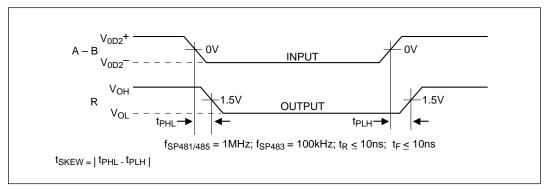


Figure 8. Receiver Propagation Delays

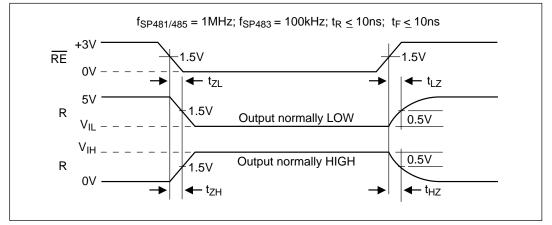
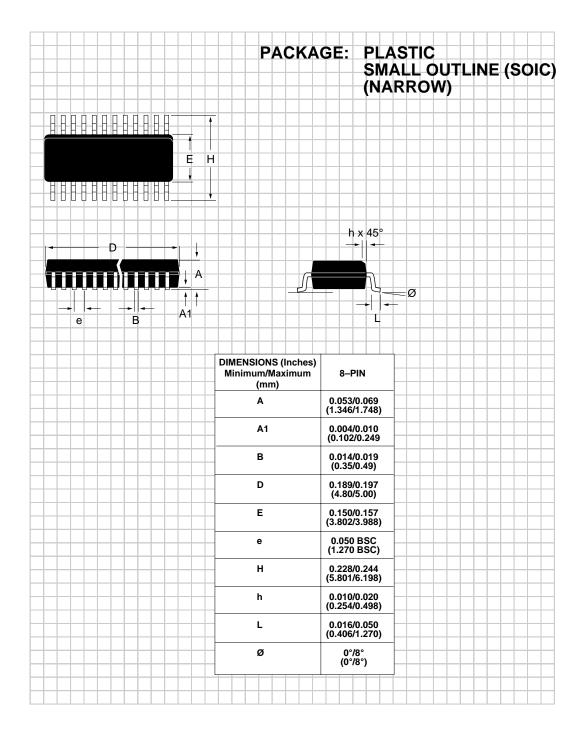
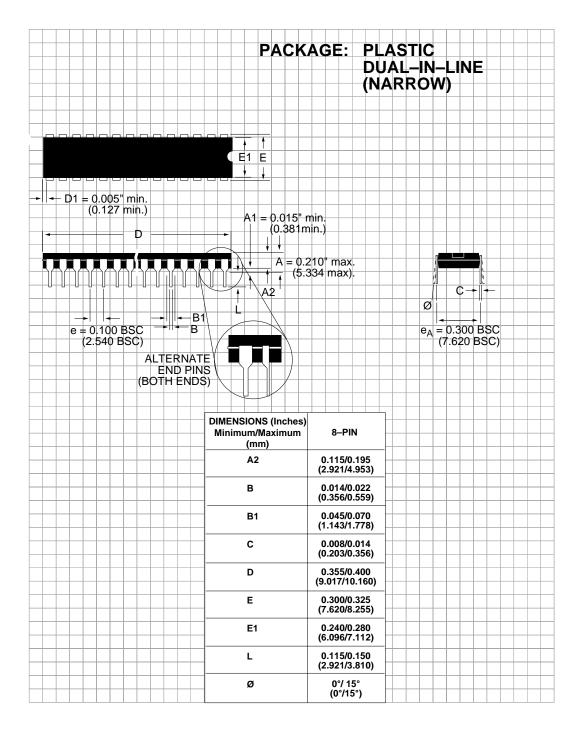




Figure 9. Receiver Enable and Disable Times

ORDERING INFORMATION

Model	Temperature Range	Package
SP481CN		8-pin Narrow SOIC
	0°C to +70°C	
SP481EN		8-pin Narrow SOIC
SP481ES	-40°C to +85°C	
SP483CN	0°C to +70°C	
SP483CS	0°C to +70°C	8-pin Plastic DIP
	-40°C to +85°C	
SP483ES	-40°C to +85°C	8-pin Plastic DIP
SP485CN	0°C to +70°C	
	0°C to +70°C	
SP485EN	-40°C to +85°C	8-pin Narrow SOIC
SP485ES	-40°C to +85°C	

Please consult the factory for pricing and availability on a Tape-On-Reel option.

Sipex Corporation

Headquarters and Sales Office 22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com

Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com