查询SP5502供应商

CHARGE PUMP 🗖

CRYSTAL Q1

CRYSTAL 02 CT

SDA ETT

1.3GHz I²C BUS 4-Address Synthesiser

Supersedes version in April 1994 Consumer IC Handbook, HB3120 - 2.0

DS3031 - 5.0 January 1997

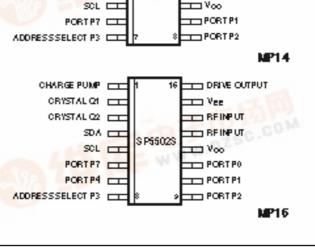
DRIVE OUTPUT

TT Veel

BE INPUT

BEINPUT

The SP5502 is a single-chip frequency synthesiser designed for TV tuning systems. Control data is entered in the standard I^2C BUS format. The SP5502 has four programmable I^2C BUS addresses, which allows two or more synthesisers to be used in a system.


The device is available in two variants: the SP5502F in 14lead miniature plastic package (MP14) and the SP5502S in 16lead miniature plastic package (MP16). See Features below for functional differences between the devices.

FEATURES

- Complete 1.3GHz Single Chip System
- Programmable via the I²C BUS
- Low Power Consumption (240mW Typ.)
- Low Radiation
- Phase Lock Detector
- Varactor Drive Amp Disable
- 5×20mA Controllable Outputs (SP5502S)
- 3×20mA Controllable Outputs (SP5502F)
- Variable I²C BUS Address for Multi-Tuner Applications
- ESD Protection *
 - * Normal ESD handling precautions should be observed.

APPLICATIONS

Cable Tuning Systems
VCRs

S P6502F

Fig. 1 Pin connections - top view

ORDERING INFORMATION

SP5502F KG MPAS (14-lead miniature plastic package) SP5502S KG MPAS (16-lead miniature plastic package)

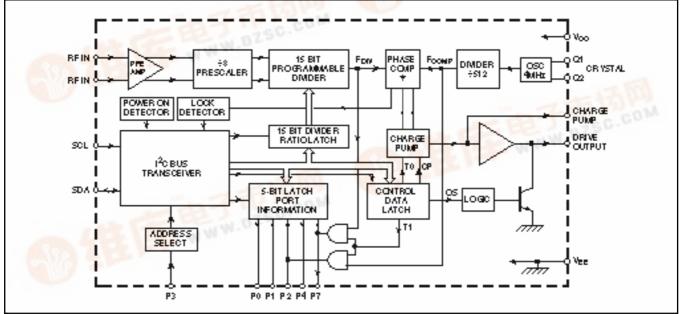


Fig. 2 Block diagram of SP5502S. (Ports P0 and P4 not present on SP5502F)

ELECTRICAL CHARACTERISTICS

 $T_{AMB} = -10^{\circ}$ C to $+80^{\circ}$ C, $V_{CC} = +4.5$ V to +5.5V. All pin references are to the SP5502S (MP16 package). These Characteristics are guaranteed by either production test or design. They apply within the specified ambient temperature and supply voltage ranges unless otherwise stated. Reference frequency 4MHz unless otherwise stated.

Characteristic	Pin		Value		Units	Conditions $V_{CC} = 5V$ $80MHz$ to 1GHz 1.3 GHz, see Fig. 5Input voltage = V_{CC} Input voltage = $0V$ When $V_{CC} = 0V$ Sink current = $3mA$ Byte 4, bit 2 = 0, pin 1 = $2V$ Byte 4, bit 2 = 1, pin 1 = $2V$ Byte 4, bit 4 = 1, pin 1 = $2V$ V pin 16 = $0.7V$ Parallel resonant crystal (note 2)
Characteristic	PIN	Min.	Тур.	Max.	Units	Conditions
Supply current	12		48	60	mA	$V_{CC} = 5V$
Prescaler input voltage	13,14	12.5		300	mVrms	80MHz to 1GHz
Prescaler input voltage		30		300	mVrms	1·3GHz, see Fig. 5
Prescaler input impedance	13,14		50			
Prescaler input capacitance			2		pF	
SDA, SCL						
Input high voltage	4,5	3		V_{CC}	V	
Input low voltage	4,5	0		1.5	V	
Input high current	4,5			10	μA	Input voltage = V_{CC}
Input low current	4,5			-10	μA	Input voltage = 0V
Leakage current	4,5			10	μA	When $V_{CC} = 0V$
SDA						
Output voltage	4			0.4	V	Sink current = 3mA
Charge pump current low	1		±50		μA	Byte 4, bit 2 = 0, pin 1 = 2V
Charge pump current high	1		±170		μA	Byte 4, bit 2 = 1, pin 1 = 2V
Charge pump output leakage current	1			± 5	nA	Byte 4, bit 4 = 1, pin 1 = 2V
Charge pump drive output current	16	500				V pin 16 = 0·7V
Charge pump amplifier gain			6400			
Recommended crystal series resistance		10		200		Parallel resonant crystal (note 2)
Crystal oscillator drive level			40		mV p-p	
Crystal oscillator negative resistance	2	750				
Output Ports						
Sink current	6,7,9-11	20			mA	V _{OUT} = 0.7V (see note 1)
Leakage current	6,7,9-11			10	μA	V _{OUT} = 13·2V
Input Port						
P3 input current high	8			1	mA	V pin 8 = V _{CC}
P3 input current low	8			-0.2	mA	V pin 8 = 0V

NOTES

1. Source impedance between all output ports and ground is approximately 5 . This should be taken into account when calculating output port saturation voltages.

2. The maximum resistance quoted refers to all conditions, including start-up.

FUNCTIONAL DESCRIPTION (Except where otherwise indicated, 'SP5502' refers to both variants)

The SP5502 is programmed from an I²C BUS. Data and Clock are fed in on the SDA and SCL lines respectively as defined by the I²C Bus format. The synthesiser can either accept new data (write mode) or send data (read mode). The Tables in Fig. 3 illustrate the format of the data. The device can be programmed to respond to several addresses, which enables the use of more than one synthesiser in an I²C Bus system. Table 3 shows how the address is selected by applying a voltage to P3. The address input is shown in Fig. 6. The LSB of the address Byte (R/W) sets the device into read mode if it is high and write mode if it is low. When the SP5502 receives a correct address Byte it pulls the SDA line low during the acknowledge period and during following acknowledge periods after further data Bytes are programmed. When the SP5502 is programmed into the read mode the controlling device accepting the data must pull down the SDA line during the following acknowledge period to read another status Byte.

WRITE MODE (FREQUENCY SYNTHESIS)

When the device is in the write mode Bytes 2+3 select the synthesised frequency while Bytes 4+5 select the output port states and charge pump information.

Once the correct address is received and acknowledged, the first Bit of the next Byte determines whether that Byte is interpreted as Byte 2 or 4, a logic 0 for frequency information and a logic 1 for charge pump and output port information. Additional data Bytes can be entered without the need to readdress the device until an I²C stop condition is recognised. This allows a smooth frequency sweep for fine tuning or AFC purposes.

If the transmission of data is stopped mid-byte (i.e., by another device on the bus) then the previously programmed byte is maintained.

Frequency data from Bytes 2 and 3 is stored in a 15-bit shift register and is used to control the division ratio of the 15-bit programmable divider which is preceded by a divide-by-8 prescaler and amplifier to give excellent sensitivity at the local oscillator input; see Fig 5. The input impedance is shown in Fig 7.

The programmed frequency can be calculated by multiplying the programmed division ratio by 8 times the comparison frequency F_{COMP} .

When frequency data is entered, the phase comparator, via the charge pump and varactor drive amplifier, adjusts the local oscillator control voltage until the output of the programmable divider is frequency and phase locked to the comparison frequency.

The reference frequency may be generated by an external source capacitively coupled into pin 2 or provided by an onchip 4MHz crystal controlled oscillator.

Note that the comparison frequency is 7.8125kHz when a 4MHz reference is used.

Bit 2 of Byte 4 of the programming data (CP) controls the current in the charge pump circuit, a logic 1 for $\pm 170\mu$ A and a logic 0 for $\pm 50\mu$ A, allowing compensation for the variable tuning slope of the tuner and also to enable fast channel changes over the full band. Bit 4 of Byte 4 (T0) disables the

charge pump if set to a logic 1. Bit 8 of Byte 4 (OS) switches the charge pump drive amplifier's output off when it is set to a logic 1. Bit 3 of Byte 4 (T1) selects a test mode where the phase comparator inputs are available on P2 and P7, a logic 1 connects F_{COMP} to P2 and F_{DIV} to P7.

Byte 5 programs the output ports P0-P2, P4 and P7 on the SP5502S (P1, P2 and P7 only on SP5502F), a logic 0 for a high impedance output, logic 1 for low impedance (on).

READ MODE

When the device is in the read mode the status data read from the device on the SDA line takes the form shown in Table 2. Bit 1 (POR) is the power supply to the device has dropped below a nominal 3V and the programmed information lost (e.g., when the device is initially turned on). The POR is set to 0 when the read sequence is terminated by a stop command. The outputs are all set to high impedance when the device is initially powered up. Bit 2 (FL) indicates whether the device is phase locked, a logic 1 is present if the device is locked and a logic 0 if the device is unlocked.

Address	1	1	0	0	0	MA1	MA0	0	Α	Byte 1
Programmable divider	0	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	Α	Byte 2
Programmable divider	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	Α	Byte 3
Charge pump and test bits	1	CP	T1	Т0	1	1	1	OS	Α	Byte 4
I/O port control bits	P7	Х	Х	P4*	Х	P2	P1	P0*	Α	Byte 5
Table 1 V	Nrite	data f	ormat	(MSB	trans	mitted	first)			
Address	1	1	0	0	0	MA1	MA0	1	Α	Byte 1
Status byte	POR	FL	Ν	Ν	Ν	Ν	Ν	Ν	Α	Byte 2
	Та	ble 2	Read	data fo	ormat					
]	MA1	MA0	Volta	ge inp	out to	P3				
	0	0	0	V to 0∙	1V _{CC}					
	0	1	C)pen c	ircuit					
	1	0	0∙4V	′ _{CC} to (0.6∧C	ct				
	1	1	0.9	9V _{CC} t	o V _{CC}					
	Ta	ble 3 /	Addres	ss sele	ection					
Α				ledge						
MA1, MA0		: V	ariable	e addr	ess bi	its (se		le 3)		
MA1, MA0 CP		: V : C	ariable harge	e addr Pump	ess bi o curre	ent sel		le 3)		
MA1, MA0 CP T1		: V : C : T	ariable harge est mo	e addr Pump ode se	ess bi curre lectio	ent sel n		le 3)		
MA1, MA0 CP T1 T0		: V : C : T : C	ariable harge est mo harge	e addr Pump ode se pump	ess bi curre lectio disat	ent sel n ole	ect	·		
MA1, MA0 CP T1 T0 OS	P1, P(: V : C : T : C : V	ariable harge est mo harge aracto	e addr Pump ode se pump or drive	ess bi curre lectio disat Outp	ent sel n ole ut disa	ect able Sv	·		
MA1, MA0 CP T1 T0	P1, P(: V : C : T : C : V)* :	ariable harge est mo harge aracto Co	e addr Pump ode se pump or drive ntrol o	ess bi curre lectio disat Outp utput	ent sel n ole	ect able Sv ates	·		
MA1, MA0 CP T1 T0 OS P7, P4*, P2, F	P1, P(: V : C : T : C : V : V)* : : P	ariable harge est mo harge aracto Cor ower (e addr Pump ode se pump or drive ntrol o	ess bi curre lectio disat Outp utput set in	ent sel n ble ut disa port si dicato	ect able Sv ates	·		
MA1, MA0 CP T1 T0 OS P7, P4 [*] , P2, F POR	P1, P(: V : C : T : C : V : V : P : P : D	ariable harge est mo harge aracto Cor ower (e addr Pump ode se pump or drive ntrol o On Re ock de are	ess bi curre lectio disat Outp utput set in	ent sel n ble ut disa port si dicato	ect able Sv ates	·		

APPLICATION

A typical application is shown in Fig. 4. All input/output interface circuits are shown in Fig. 6.

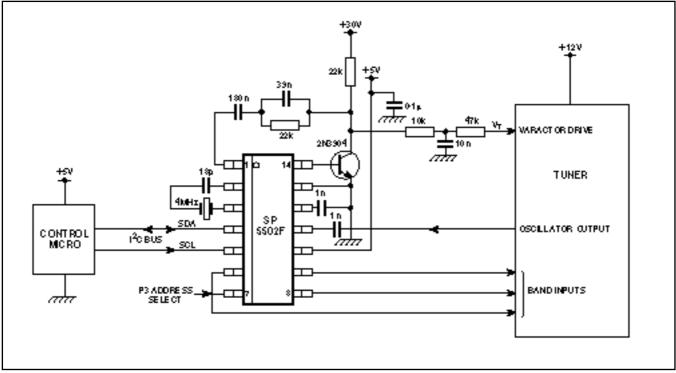


Fig. 4 Typical application

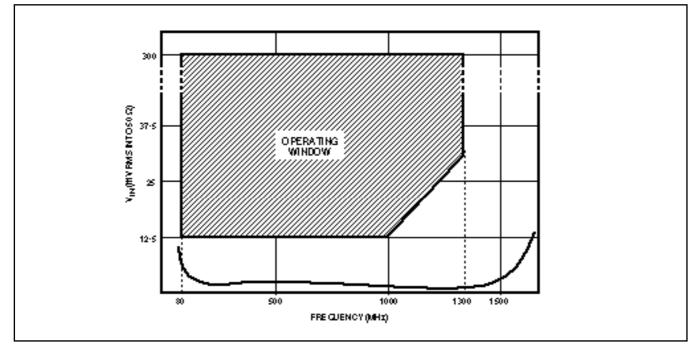


Fig. 5 Typical input sensitivity

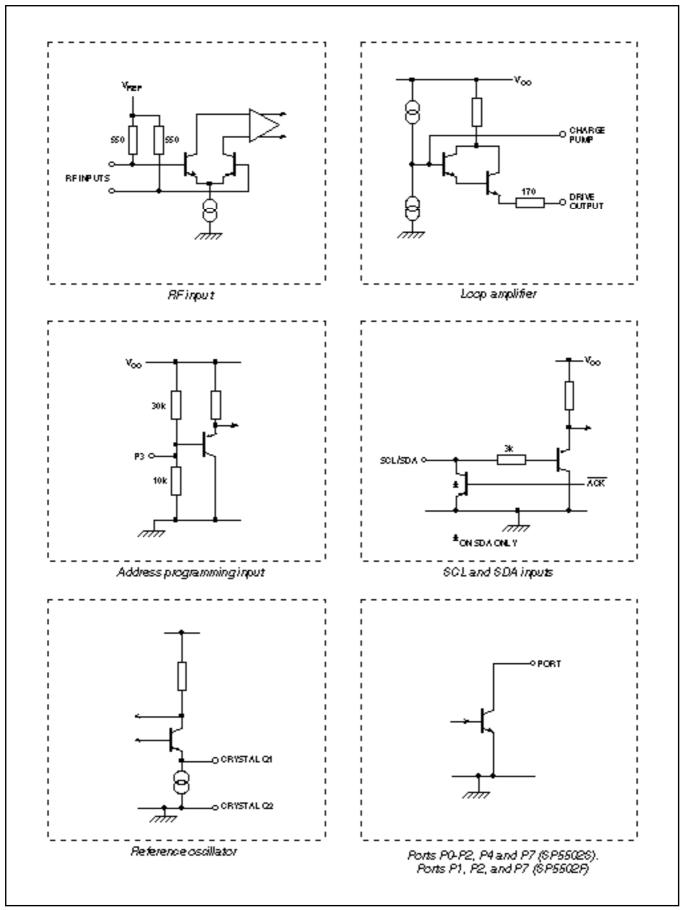


Fig. 6 SP5502 input/output interface circuits

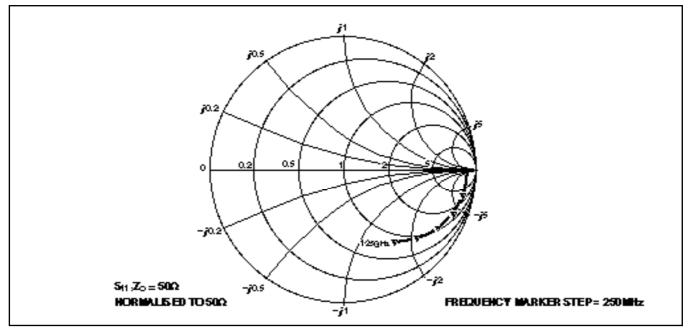


Fig. 7 Typical input impedance

$\begin{array}{l} \textbf{ABSOLUTE MAXIMUM RATINGS} \\ \text{All voltages are referred to } V_{\text{EE}} = 0V \end{array}$

Parameter	Р	in	Va	lue	Units	Conditions
	SP5502S	SP5502F	Min.	Max.	onito	Conditions
Supply voltage	12	10	-0.3	7	V	
RF input voltage	13,14	11,12		2.5	V р-р	
Port voltage	6,7, 9-11 6,7, 9-11 8	6,8, 9 6,8, 9 7	-0·3 -0·3 -0·3	14 6 V _{CC} +0·3	V V V	Port in off state Port in on state
Total port output current	6,7, 9-11	6,8, 9		50	mA	
RF input DC offset	13,14	11,12	-0.3	V_{CC} +0·3	V	
Charge pump DC offset	1	1	-0·3	V_{CC} +0·3	V	
Drive output DC offset	16	14	−0·3	V_{CC} +0·3	V	
Crystal oscillator DC offset	2	2	−0·3	V_{CC} +0·3	V	
SDA, SCL input voltage	4,5	4,5	-0.3	V_{CC} +0·3	V	With V_{CC} applied
			-0.3	5.2	V	V_{CC} not applied
Storage temperature			-55	+150	°C	
Junction temperature				+150	°C	
MP16 thermal resistance, chip-to-ambient MP16 thermal resistance, chip-to-case				111 41	°C/W °C/W	
MP14 thermal resistance, chip-to-ambient MP14 thermal resistance, chip-to-case				123 45	°C/W °C/W	
Power consumption at 5.5V				363	mW	

APPROVED	DATE	ACN	ISSUE	© Mitel	ς, άμξις S	
	7APR95	006745	1		Index area Index area Pi Pi Index Pi Pi Pi Pi Pi Pi Pi Pi Pi Pi Pi Pi Pi	
	27FEB97	201937	2		excess o	
	12JUN97	202596	3		Pin 1 Pin 1	
	9DEC97	203707	4		Index area $h \times 45^{-1}$ $h \times$	
					r protusic	
					present,	
					n. Allowat	
					A Seating Plane burrs. These shall not exceed 0.006" per side. Allowable dambar protusion shall be 0.004"	
					all not exceed 0	
					n shall be	
		́ Н С			st be side. e 0.004"	
			Title:	ORIGIN		
GPL	Drawing Number	14 lds S	Package	ORIGINATING SITE:	to <u>0°</u> <u>0°</u> <u>1.2</u> <u>55555</u> <u>100</u> <u>11.2</u>	
GPDUUU11		UIC(N)-U	Package Outline Drawing for	E: SWINDON	EDEC 4 0.2.2 Mar	
	_	.150 Bo)rawing f	N	x Min n inch 10 0.053 15 0.004 17 0.016 17 0.016 10 0.013 10 0.010 1 0.010 MS-012AB 1	
		dy Width			Max inch 0.069 0.010 0.0244 0.020 0.020 0.020 0.020 155. C	

http://www.mitelsemi.com

World Headquarters - Canada Tel: +1 (613) 592 2122

Fax: +1 (613) 592 6909

North America Tel: +1 (770) 486 0194 Fax: +1 (770) 631 8213 **Asia/Pacific** Tel: +65 333 6193 Fax: +65 333 6192 Europe, Middle East, and Africa (EMEA) Tel: +44 (0) 1793 518528 Fax: +44 (0) 1793 518581

Information relating to products and services furnished herein by Mitel Corporation or its subsidiaries (collectively "Mitel") is believed to be reliable. However, Mitel assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Mitel whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Mitel, or non-Mitel furnished goods or services may infringe patents or other intellectual property rights owned by Mitel.

This publication is issued to provide information only and (unless agreed by Mitel in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Mitel without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Mitel's conditions of sale which are available on request.

M Mitel (design) and ST-BUS are registered trademarks of MITEL Corporation Mitel Semiconductor is an ISO 9001 Registered Company Copyright 1999 MITEL Corporation All Rights Reserved Printed in CANADA

TECHNICAL DOCUMENTATION - NOT FOR RESALE