

Product Description

The Stanford Microdevices' SRF-2016 is a multipurpose demodulator RFIC capable of both quadrature demodulation or direct IF output. This device features switchable gain control, high input P1dB, and excellent I/Q amplitude and phase balance.

The SRF-2016 uses silicon germanium device technology to yield a highly integrated RFIC for use in a variety of system applications. Use of this integrated device over standard discrete implementations can result in lower component count, less PCB space and higher transceiver card yields.

Functional Block Diagram

Advanced Data Sheet

SRF-2016 200 - 600 MHz Silicon Germanium IF Receiver

16 pin TSSOP with Exposed Pad Package Body: 0.20 x 0.17 x 0.04 (inches) 5.0 x 4.4 x 1.0 (mm)

Product Features

- Buffered IF OUT available through I axis
- Gain control in 20dB steps
- Excellent I/Q amplitude and phase balance
- High input P1dB

Applications

- Digital and spread spectrum communication
 systems
- Cellular, PCS, DCS, 3G transceivers
- ISM band transceivers
- FWA receiver IF sections

Key	Specifications
-----	----------------

Key Specifications					
Parameters	Test Conditions (V _{CC} =5.0V, I=150mA, T=25°C)	Unit	Min.	Тур.	Max.
IF/LO Frequency Range		MHz	200	240 to 440	600
Conversion Gain	THE PARTY	dB		-5/+15/+35	
Input P1dB	TIPECOM	dBm		+10/-10/-30	
I/Q Output Frequency Range	W DZSU	MHz	DC		500
I/Q Output Amplitude Balance	1 ····	dB	-0.2		0.2
I/Q Output Phase Balance		deg	-2		2

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.

product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086

Phone: (800) SMI-MMIC

http://www.stanfordmicro.com 04/23/01 rev 5.0

Absolute Maximum Ratings

Parameters	Value	Unit	
Supply Voltage	6.0	V _{DC}	
LO Input	+10	dBm	
IF Input	+10	dBm	
Operating Temperature	-40 to +85	°C	
Storage Temperature	-65 to +150	°C	

Advanced Data Sheet

SRF-2016 SiGe IF Receiver

Test Conditions							
$V_{S} = +5V_{DC}$	TA = +25°C	LO Input = 0dBm, 400MHz					
IF Input	GC1 = 0, GC2 = 0; 0dBm						
F=400.1 MHz	GC1 = 1, GC2 = 0; -20dBm						
1 - 100.1 10112	GC1 = 1, GC2 =	1; -40dBm					

Product Specifications – IF Input (I/Q mixing to baseband)

Product Specifications – Stuck Mixer (DC on LO Port – gain controlled amplifier)

						(De on Lo Port – gain controlled ampliner)					
Parameters	Test Conditions	Unit	Min.	Тур.	Max.	Parameters	Test Conditions	Unit	Min.	Тур.	Max.
Frequency Range		MHz	200	240-440	600	Frequency Range		MHz	200		600
Return Loss	50ohm reference	dB		20		Return Loss	50ohm reference	dB		20	
Gain		dB		35		Gain		dB		40	
Input P1dB	gain set=high	dBm		-30		Input P1dB	gain set=high GC1=GC2=1	dBm		-26	
Input IP3	GC1=GC2=1	dBm		-20		Input IP3		dBm		-16	
Noise Figure		dB		6		Noise Figure		dB		6	
Gain		dB		15		Gain	gain set=medium GC1=1	dB		20	
Input P1dB	gain set=medium GC1=1	dBm		-10		Input P1dB		dBm		-6	
Input IP3	GC2=0	dBm		0		Input IP3	GC2=0	dBm		4	
Noise Figure		dB		10		Noise Figure		dB		9	
Gain		dB		-5		Gain		dB		0	
Input P1dB	gain set=low GC1=GC2=0	dBm		10		Input P1dB	gain set=low	dBm		14	
Input IP3		dBm		20		Input IP3	ĞC1=GC2=0	dBm		24	
Noise Figure		dB		30		Noise Figure		dB		30	

Product Specifications – I/Q Output

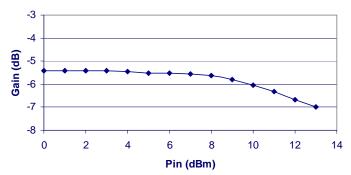
Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
I/Q Output Frequency Range		MHz	DC		500
I/Q Output Amplitude Balance		dB	-0.2		0.2
I/Q Output Phase Balance		deg	-2		2
I/Q Output Common-mode Voltage		V		2.5	

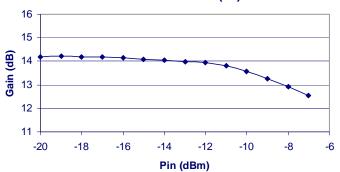
Product Specifications – LO Input

Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
LO Input Level		dBm	-3	0	+3
Return Loss		dB		20	

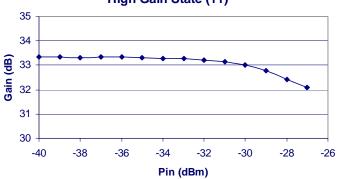
Product Specifications – Miscellaneous

Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
Supply Voltage		V	+4.75	+5.0	+5.25
Supply Current		mA		180	
Thermal Resistance		°C		TBD	


The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC 0//3/01 rev 5 0.


40	vanced	Data	Sheet
Au	vanceu	Dala	Sheer

SRF-2016 SiGe IF Receiver


Gain vs. Pin Low Gain State (00)

Gain vs. Pin High Gain State (11)

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC at the support of the superior o

Phone: (800) SMI-MMIC

04/23/01 rev 5.0

Advanced Data Sheet

SRF-2016 SiGe IF Receiver

Pin Out Description

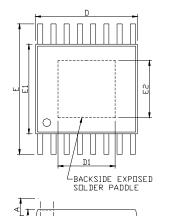
Pin #	Function	Description	Additional Comments
1	BBIN	Baseband I-axis output (-)	self-biasing
2	BBIP	Baseband I-axis output (+)	self-biasing
3	VCC	Positive power supply	
4	GC2	Gain control input, stage 2	5V CMOS levels
5	GC1	Gain control input, stage 1	5V CMOS levels
6	VEE	Ground	
7	VCC	Positive power supply	
8	INP	IF input (+)	self-biasing; AC-couple
9	INN	IF input (-)	self-biasing; AC-couple
10	VCC	Positive power supply	
11	VEE	Ground	
12	LON	LO input (-)	self-biasing; AC-couple
13	LOP	LO input (+)	self-biasing; AC-couple
14	VCC	Positive power supply	
15	BBQN	Baseband Q-axis output (-)	self-biasing
16	BBQP	Baseband Q-axis output (+)	self-biasing

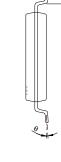
The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC A

Caution: ESD Sensitive

Appropriate precaution in handling, packaging and testing devices must be observed.

Advanced Data Sheet


SRF-2016 SiGe IF Receiver

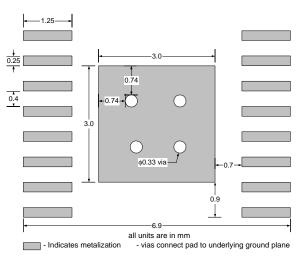

Part Number Ordering Information

Part Number	Reel Size	Devices/Reel
SRF-2016	TBD	TBD

Part Symbolization

The part will be symbolized with a "TBD" marking designator on the top surface of the package.

Package Dimensions


NOTE 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH

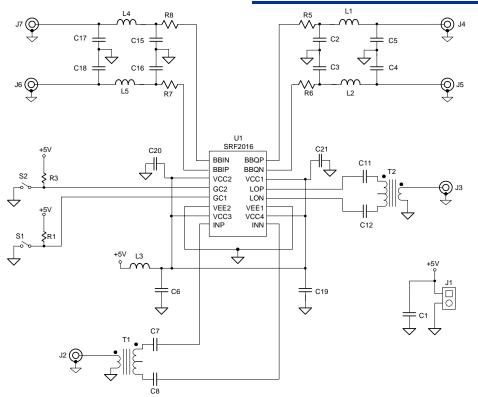
PROTRUSIONS OR GATE BURRS 2. TOLERANCE ±0.1 mm UNLESS OTHERWISE SPECIFIED

17 TOLERANCE 20.1 IIIII UNLESS OFFERENTSE SPECIFIED
 3. COPLANARITY: 0.1 mm
 4. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED
 INCH DIMENSIONS ARE NOT NECESSARILY EXACT.
 5. FOLLOWED FROM JEDEC MO-153

SYMBOLS	DIMENS	IONS IN MILLI	METERS	DIMI	ENSIONS IN IN	CHES
51 MBOLS	MIN	NOM	MAX	MIN	NOM	MAX
А			1.15			0.045
Al	0.00		0.10	0.000		0.004
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.008
D	4.90	5.00	5.10	0.193	0.197	0.201
D1		2.80			0.110	
E		6.40			0.252	
E1	4.30	4.40	4.50	0.169	0.173	0.177
E2		2.80			0.110	
e		0.65			0.026	
L	0.45	0.60	0.75	0.018	0.024	0.030
у			0.10			0.004
θ	0°		8°	0°		8°

Test PCB Pad Layout

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

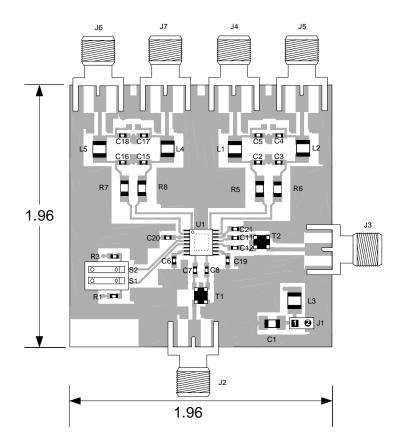

Phone: (800) SMI-MMIC 5

04/23/01 rev 5.0

Demo Test Board Schematic

Bill of Materials

Component Designator	Value	Qty	Vendor	Part Number	Description
U1		1	SMDI	SRF-2016	IF receiver
J1		1	Digikey-Sullins	S1312-02-ND	2 pin 0.1" power supply header
J2, J3, J4, J5, J6, J7		6	Johnson Components	142-0701-851	SMA end launch connector
T1, T2		2	Mini-Circuits	TC1-1	Transformer
C1	1uF	1	Venkel	C1206Y5V160-105ZNE	1206 size supply bypass capacitor
S1, S2		1	Grayhill	GH1102-ND	Dual DIP switch
R1, R3	1 kohm	2	Venkel	CR0603-16W-102JT	0603 size pull-up resistor
C6, C19, C20, C21	1nF	4	Venkel	C0603COG500-102JNE	0603 size bypass capacitor
L1, L2, L3, L4, L5	1uH	5	Panasonic	PCD1008TR-ND	1210 size inductor
C7, C8, C11, C12	18pF	4	Venkel	C0603COG500-180JNE	0603 size coupling capacitor
R5, R6, R7, R8	0 ohm	4	Venkel	CR1206-8W-000T	1206 size resistor
C2, C3, C4, C5, C15, C16, C17, C18	820pF	8	Venkel	C0603COG500-821JNE	0603 size filter capacitor


The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC 6

Advanced Data Sheet

SRF-2016 SiGe IF Receiver

Demo Test Board (Fully Assembled PCB)

Note: Dimensions in inches

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC 4 ttp://www.stanfordmicro.com 0//32/01 rev 5.0