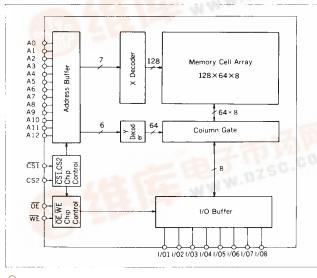
HIGH SPEED CMOS 64K-BIT STATIC RAM

DESCRIPTION

The SRM2264L1012 is an 8,192 words x 8 bits asynchronous, static, random access memory on a monolithic CMOS chip. Its very low standby power requirement makes it ideal for applications requiring non-volatile storage with back-up batteries. The asynchronous and static nature of the memory requires no external clock or refreshing circuit. Both the input and output ports are TTL compatible; and the three-state output allows easy expansion of memory capacity.

FEATURES

Fast access time	SRM2264L	.10 100ns (Max)
Low supply current		12 120ns (Max)
		47mA (Typ) 100ns
		45mA (Typ) 120ns


- Completely static
 No clock required
- TTL compatible inputs and outputs

查询SRM2264L供应商

- 3-state output with wired-OR capability
- Non-volatile storage with back-up batteries
- Package SRM2264LC10/12 28-pin DIP(plastic)

SRM2264LC10/12 28-pin DIP(plastic) SRM2264LM10/12 28-pin SOP (plastic)

BLOCK DIAGRAM

PIN CONFIGURATION

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
--	--

PIN DESCRIPTION

A0 to A12	Address Input
WE	Write Enable
ŌE	Output Enable
CS1, CS2	Chip Select
I/01 to 8	Data I/O
VDD	Power Supply(+5V)
Vss	Power Supply(OV)
NC	No connection

SRM2264L10/12

ABSOLUTE MAXIMUM RATINGS			(Vss=0V
Parameter	Symbol	Ratings	Unit
Supply voltage	VDD	-0.5 to 7.0	V
Input voltage *	VI	-0.5 to 7.0	v
Input/Output voltage*	Vi⁄o	-0.5 to VDD+O.3	V
Power dissipation	PD	1.0	w
Operating temperature	Topr	0 to 70	°C
Storage temperature	Tstg	-65 to 150	°C
Soldering temperature and time	Tsol	260°C, 10s (at lead)	_

RECOMMENDED DC OPERATING CONDITIONS

* VI, VI/O (Min) = -1.0V when pulse width is 50 ns $(Vss = 0V, Ta = 0 \text{ to } 70^{\circ}C)$

ILCOMMENDED DC O					0° , $1^{\circ} = 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$
Parameter	Symbol	Min	Тур	Max	Unit
Supply Veltero	VDD	4.5	5.0	5.5	V
Supply Voltage	Vss	0	0	0	V
Input Voltage	ViH	2.2	3.5	VDD + 0.3	V
input voltage	VIL	-0.3 *	_	0.8	v

ELECTRICAL CHARACTERISTICS

* If pulse width is less than 50 ns, it is -1.0V

DC Electrical Characteristics				$(V_{DD} = 5V \pm 10\%, V_{SS} = 0V, T_{a} = 0 \text{ to } 70^{\circ}\text{C}$					
Parameter	Symbol	Conditions	SR	M2264L	10	SRM	12264L1	2	Unit
			Min	Typ*	Max	Min	Тур*	Max	
Input leakage current	ILI	Vi = 0 to VDD	-1	-	1	-1		1	μΑ
Standby supply current	IDDS	CS1-VIH or CS2-VIL	_	0.5	1.0		0.5	1.0	mA
	IDDS1	CS1=CS2>VDD -0.2V or CS2≤0.2V	—	0.5	20	_	0.5	20	μΑ
Average operating current	IDDA	V=VIL,VIH II/O=0mA toyc=Min		47	82	—	45	80	mA
Operating supply current	lddo		-	35	60	_	35	60	mA
Output leakage	ILO	CS1=VIH or CS2=VIL or WE=VIL	-1	_	1	-1		1	μΑ
-		or OE=VIH, VVO=0 to VDD							
High level output voltage	Vон	IOH=-1.0mA	2.4	VDD-0.1	-	2.4	VDD-0.1		V
Low level output voltage	VOL	loL=4.0mA	—	0.2	0.4	—	0.2	0.4	V

Terminal Capacitance

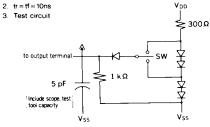
(f = 1MHz, Ta = 25°C) Parameter Symbol Conditions Min Max Unit Тур VADD = OV Address Capacitance CADD 5 -----3 рF Input Capacitance Сі $V_{i} = 0V$ 5 6 рF ____ I/O Capacitance Cvo Vi/o = 0V 6 7 рF ____

AC Electrical Characteristics O Read Cycle

 $(VDD = 5V \pm 10\%, Vss = 0V, Ta = 0 \text{ to } 70^{\circ}\text{C})$

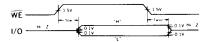
			(100 = 01 ± 10%, 100 = 01; 14 = 0 10 10 0)					
Parameter	Symbol	Conditions	SRM2264L10		SRM2264L	Unit		
T didificion			Min	Max	Min	Max		
Read cycle time	tRC		100	_	120	—	ns	
Address access time	tACC			100		120	ns	
CS1 access time	tACS1	*1		100		120	ns	
CS2 access time	tACS2			100		120	ns	
OE access time	tOE		—	50	_	60	ns	
CS1 output set time	tCLZ1		10		10		ns	
CS1 output floating time	tCHZ1			35		40	ns	
CS2 output set time	tCLZ2	*2	10		10		ns	
CS2 output floating time	tCHZ2			35	_	40	ns	
OE output set time	tolz		5	—	5	—	ns	
OE output floating time	tonz		_	35	—	40	ns	
Output hold time	tOH	*1	10	—	10	—	ns	

O Write Cycle

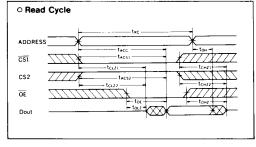

			SRM22	264L10	SRM2	264L12	
Parameter	Symbol	Conditions	Min	Max	Min	Max	Unit
Write cycle time	twc		100		120	—	ns
Chip select time 1	tcw1		80		85		ns
Chip select time 2	tCW2		80		85	—	ns
Address enable time	taw		80		85		ns
Address setup time	tas	*1	0	—	0	—	ns
Write pulse width	twp		60		70		ns
Address hold time	twn		0	-	0	—	ns
Input data setup time	tow		50	- 1	50	_	ns
Input data hold time	ton		0		0	_	ns
WE output floating	twHz	*3		35		40	ns
WE output setup time	tow	3	5		5	_	ns

* 1 Test Conditions

- 1. Input pulse level : 0.8V to 2.4V
- 2. tr = tf = 10ns
- 3. Input and output timing reference levels : 1.5V
- 4. Output load ITTL + CL = 100pF

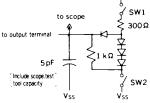

* 3 Test Conditions

- 1. Input pulse level : 0.8V to 2.4V
- 2. tr = tf = 10ns



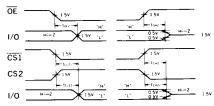
Test : tow,twnz Hi-Z . "H" and "H" . Hi-Z SW is Voo side Test : tow,twnz Hi-Z .* "L" and "L" .+ Hi-Z SW is Vss side

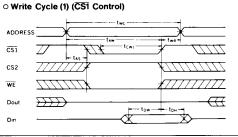
Output turnon turnoff time

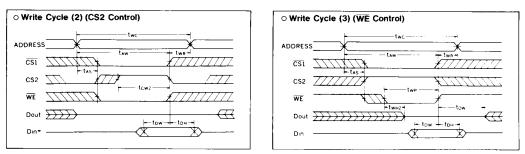

Timing Chart

* 2 Test Conditions

- 1. Input pulse level : 0.8V to 2.4V
- 2. tr = tf = 10ns





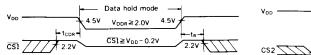

VDD

Test : tcHz1, tcHz2, toHz Both SW1 and SW2 are close Test : toL21, toL22, toL2 Hi-Z---"H" SW1 is open, SW2 is close. Test: tci.zi, tci.zz, toi.z Hi-Z→"L" SW1 is close, SW2 is open.

Note : 1. During read cycle time, WE is to be "H" level.

- 2. During write cycle time that is controlled by CS1 or CS2, Output Buffer is in high impedance state whether OE level is "H" or "L".
- 3. During write cycle time that is controlled by WE, Output Buffer is high impedance state if OE is "H" level.

DATA RETENTION CHARACTERISTIC WITH LOW VOLTAGE POWER SUPPLY


 $(Ta = 0 to 70^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Data retention supply voltage	VDDR		2.0	_	5.5	v
Data retention current	DDR	$\frac{V_{DD} = 3V}{CS1 = CS2 \ge V_{DD} - 0.2V \text{ or } CS2 \ge 0.2V}$	_	-	10	μA
Chip select data hold time	tCDR		0			ns
Operation recovery time	t _R		t _{RC} *			ns

*t_{RC} = Read cycle time

Data retention timing (CS1 Control)

Data retention timing (CS2 Control)

FUNCTIONS

Truth Table

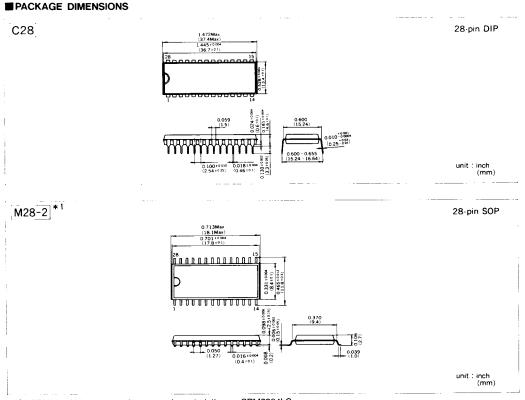
CS1	CS2	OE	WE	A0 to A12	DATA I/O	Mode	IDD
н	х	-	—		Hi-Z	Unselected	IDDS, IDDS1
_	L		_	_	Hi-Z	Unselected	IDDS, IDDS1
L	н	х	L	Stable	Input data	Write	IDDO
L	н	L	н	Stable	Output data	Read	IDDO
L	н	н	н	Stable	Hi-Z	Output disable	IDDO

X:"H" or "L", --: "H", "L" or "Hi-Z"

Reading data

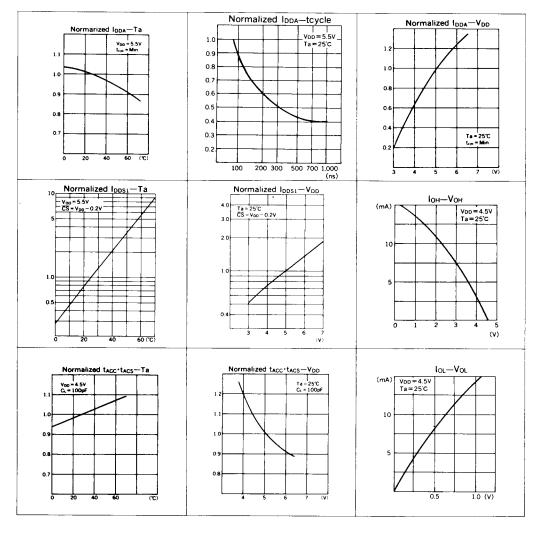
Data is able to be read when the address is setted while holding $\overline{CS1} = "L"$, CS2 = "H", $\overline{OE} = "L"$ and $\overline{WE} = "H"$. Since Data I/O terminals are in high impedance state when $\overline{OE} = "H"$, the data bus line can be used for any other objective, then access time apparently is able to be cut down.

Writing data


There are the following four ways of writing data into the memory.

- (1) Hold CS2 ="H", WE="L" set addresses and give "L" pulse to CS1.
- (2) Hold CS1="L". WE ="L", set addresses and give "H" pulse to CS2.
- (3) Hold $\overline{CS1}$ = "L", CS2 = "H", set addresses and give "L" pulse to \overline{WE} .
- (4) After setting addresses, give "L" pulse to CS1, WE and give "H" pulse to CS2.

Anyway, data on the Data I/O terminals are latched up into the SRM2264L $\frac{90}{10}$ at the end of the period that $\overline{CS1}$, WE are "L" level, and CS2 is "H" level. As Data I/O terminals are in high impedance state when any of $\overline{CS1}$, \overline{OE} = "H", or CS2 = "L", the contention on the data bus can be avoided.


Standby mode

When CS1 is "H" or CS2 is "L" level, the SRM2264L90/10/12 is in the standby mode which has retaining date operation. In this case Data I/O terminals are Hi-Z, and all inputs of addresses, WE and data can be any "H" or "L". When CS1 and CS2 level are in the range over VDD-0.2V, or CS2 level is in the range under 0.2V, in the SRM2264L10/12 there is almost no current flow except through the high resistance parts of the memory.

*1 SRM2264LM90/10/12 has the same characteristics as SRM2264LC90/10/12.

CHARACTERISTICS CURVES

A-20
