

ST3241E

±15KV ESD PROTECTED 3 TO 5.5V, 400KBPS, RS-232 TRANSCEIVER WITH AUTO-POWERDOWN

- ESD PROTECTION FOR RS-232 I/O PINS: ±8KV IEC 1000-4-2 CONTACT DISCHARGE ±15KV HUMAN BODY MODEL
- 1μA SUPPLY CURRENT ACHIEVED WHEN IN AUTO-POWERDOWN
- 250Kbps MINIMUM GUARANTEED DATA RATE
- GUARANTEED 6V/µs SLEW RATE RANGE
- GUARANTEED MOUSE DRIVEABILITY
- 0.1µF EXTERNAL CAPACITORS
- MEET EIA/TIA-232 SPECIFICATIONS DOWN TO 3V
- AVAILABLE IN SO-28, SSOP28 AND TSSOP28 PACKAGES

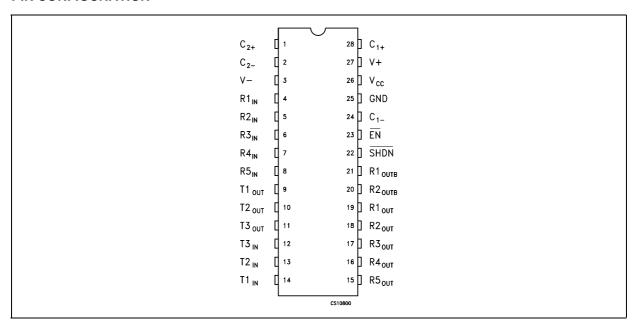
DESCRIPTION

The ST3241E device consists of 3 drivers, 5 receivers and a dual charge-pump circuit. The device meets the requirements of EIA/TIA and V.28/V.24 comunication standards providing high data rate capability and enhanced electrostatic discharge (ESD) protection. All transmitter outputs and receiver input are protected to ±8KV USING IEC 1000-4-2 contact discharge and ±15KV using the Human Body Model. The receiver R2 is always active to implement a wake-up feature for serial port.

The ST3241E has a proprietary low-dropout transmitter output stage enabling true RS-232 performance from a 3.0V to 5.5V supply with a dual charge pump. The device is guaranteed to run at data rates of 250kbps while maintaining RS-232 output levels.

It is a complete serial port (3 drivers, 5 receivers) intended for notebook or subnotebook computers. Receivers R1 and R2 have extra outputs in addition to their standard outputs. These extra outputa are always active.

Typical application are in notebook, subnotebook, palmtop computers, battery-powered equipment, hand-held equipment, peripherals and printers.


ORDERING CODES

Туре	Temperature Range	Package	Comments
ST3241ECD	0 to 70 °C	SO-28 (Tube)	27parts per tube / 12tube per box
ST3241EBD	-40 to 85 °C	SO-28 (Tube)	27parts per tube / 12tube per box
ST3241ECDR	0 to 70 °C	SO-28 (Tape & Reel)	1000 parts per reel
ST3241EBDR	-40 to 85 °C	SO-28 (Tape & Reel)	1000 parts per reel
ST3241ECPR	0 to 70 °C	SSOP-28 (Tape & Reel)	1350 parts per reel
ST3241EBPR	-40 to 85 °C	SSOP-28 (Tape & Reel)	1350 parts per reel
ST3241ECTR	0 to 70 °C	TSSOP28 (Tape & Reel)	2500 parts per reel
ST3241EBTR	-40 to 85 °C	TSSOP28 (Tape & Reel)	2500 parts per reel

PIN DESCRIPTION

PIN N°	SYMBOL	NAME AND FUNCTION	
1	C ₂ +	Positive Terminal of Inverting Charge Pump Capacitor	
2	C ₂ -	Negative Terminal of Inverting Charge Pump Capacitor	
3	V-	-5.5V Generated by the Charge Pump	
4	R1 _{IN}	First Receiver Input Voltage	
5	R2 _{IN}	Second Receiver Input Voltage	
6	R3 _{IN}	Third Receiver Input Voltage	
7	R4 _{IN}	Fourth Receiver Input Voltage	
8	R5 _{IN}	Fifth Receiver Input Voltage	
9	T1 _{OUT}	First Transmitter Output Voltage	
10	T2 _{OUT}	Second Transmitter Output Voltage	
11	T3 _{OUT}	Third Transmitter Output Voltage	
12	T3 _{IN}	Third Transmitter Input Voltage	
13	T2 _{IN}	Second Transmitter Input Voltage	
14	T1 _{IN}	First Transmitter Input Voltage	
15	R5 _{OUT}	Fifth Receiver Output Voltage	
16	R4 _{OUT}	Fourth Receiver Output Voltage	
17	R3 _{OUT}	Third Receiver Output Voltage	
18	R2 _{OUT}	Second Receiver Output Voltage	
19	R1 _{OUT}	First Receiver Output Voltage	
20	R2 _{OUTB}	Non-inverting Complementary Receiver Output, always active for wake-up	
21	R1 _{OUTB}	Non-inverting Complementary Receiver Output, always active for wake-up	
22	SHDN	Shutdown Control. Active Low.	
23	EN	Receiver Enable. Active Low	
24	C ₁ -	Negative Terminal of Voltage- Charge Pump Capacitor	
25	GND	Ground	
26	V _{CC}	Supply Voltage	
27	V+	5.5V Generated by the Charge Pump	
28	C ₁ +	Positive Terminal of Voltage- Charge Pump Capacitor	

PIN CONFIGURATION

SHUTDOWN AND ENABLE CONTROL TRUTH TABLE

SHDN	EN	T _{OUT}	R _{OUT}	R _{OUTB}
0	0	HIGH Z	ACTIVE	ACTIVE
0	1	HIGH Z	HIGH Z	ACTIVE
1	0	ACTIVE	ACTIVE	ACTIVE
1	1	ACTIVE	HIGH Z	ACTIVE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.3 to 6	V
V+	Extra Positive Voltage (Note 1)	(V _{CC} -0.3) to 7	V
V-	Extra negative Voltage (Note 1)	0.3 to -7	V
V+ + V-	(Note 1)	13	V
SHDN, EN, T _{IN}	Input Voltage	-0.3 to 6	V
R _{IN}	Receiver Input Voltage Range	± 25	V
T _{OUT}	Transmitter Output Voltage Range	± 13.2	V
R _{OUT} R _{OUTB}	Receiver Output Voltage Range	-0.3 to (V _{CC} + 0.3)	V
t _{SHORT}	Short Circuit Duration on T _{OUT} (one at a time)	Continuous	
T _{stg}	Storage Temperature Range	-65 to 150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Note 1: V+ and V- can have magnitude of 7V, but their absolute difference cannot exceed 13V

ESD PERFORMANCE: TRANSMITTER OUTPUTS, RECEIVER INPUTS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ESD	ESD Protection Voltage	Human Body Model	± 15			KV
ESD	ESD Protection Voltage	IEC 1000-4-2 (Contact Discharge)	± 8			KV

ELECTRICAL CHARACTERISTICS

(C₁ - C₄ = 0.1 μ F, V_{CC} = 3V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SUPPLY}	Supply Current	No load $V_{CC} = 3.3V$ or 5V, $T_A = 25$ °C		0.3	1	mA
I _{SHDN}	Shutdown Supply Current	SHDN = GND, T _A = 25°C	_	1	10	μΑ

LOGIC INPUT AND RECEIVER OUTPUT ELECTRICAL CHARACTERISTICS

(C₁ - C₄ = 0.1 μ F, V_{CC} = 3V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{TIL}	Input Logic Threshold Low	T _{IN} , EN, SHDN			0.8	V
V _{TIH}	Input Logic Threshold High	$V_{CC} = 3.3V$ $V_{CC} = 5V$	2 2.4			V V
I _{IL}	Input Leakage Current	T _{IN} , EN, SHDN		± 0.01	± 1.0	μΑ

RECEIVER OUTPUT ELECTRICAL CHARACTERISTICS

(C₁ - C₄ = 0.1 μ F, V_{CC} = 3V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{OL}	Output Leakage Current	R _{OUT} , EN, Receiver Disabled		± 0.05	± 10	μΑ
V _{OL}	Output Voltage Low	I _{OUT} = 1.6mA			0.4	V
V _{OH}	Output Voltage High	I _{OUT} = -1mA		V _{CC} -0.6	V _{CC} -0.1	V

TRANSMITTER ELECTRICAL CHARACTERISTICS

(C₁ - C₄ = 0.1 μ F, V_{CC} = 3V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{TOUT}	Output Voltage Swing	All Transmitter outputs are loaded with $3K\Omega$ to GND	± 5	± 5.4		V
R _{OUT}	Output Resistance	$V_{CC} = V + = V - = 0V$ $V_{OUT} = \pm 2V$	300	10M		Ω
I _{SC}	Output Short Circuit Current	V _{CC} = 3.3V		± 35	± 60	mA
ΙL	Output Leackage Current	$V_{CC} = 0$ to 5.5V, trasmitter output = \pm 12V, trasmitter disabled			± 25	mA
V _{TO}	Transmitter Output Voltage	T1IN = T2IN = GND, T3IN = V_{CC} T3OUT loaded with 3K Ω to GND	± 5			V
		T1OUT and T2OUT loaded with 2.5mA each				

RECEIVER ELECTRICAL CHARACTERISTICS

(C₁ - C₄ = 0.1 μ F, V_{CC} = 3V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

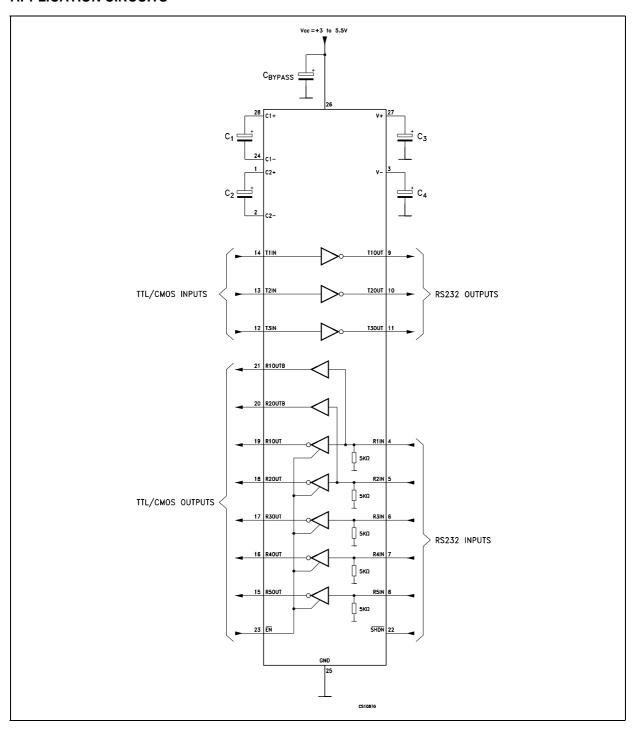
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{RIN}	Receiver Input Voltage Operating Range		-25		25	V
V _{RIL}	RS-232 Input Threshold Low	$T_A = 25^{\circ}C$ $V_{CC} = 3.3V$ $T_A = 25^{\circ}C$ $V_{CC} = 5.0V$	0.6 0.8	1.2 1.5		V
V _{RIH}	RS-232 Input Threshold High	$T_A = 25^{\circ}C$ $V_{CC} = 3.3V$ $T_A = 25^{\circ}C$ $V_{CC} = 5.0V$		1.5 1.8	2.4 2.4	V
V _{RIHYS}	Input Hysteresis			0.3		V
R _{RIN}	Input Resistance	T _A = 25°C	3	5	7	ΚΩ

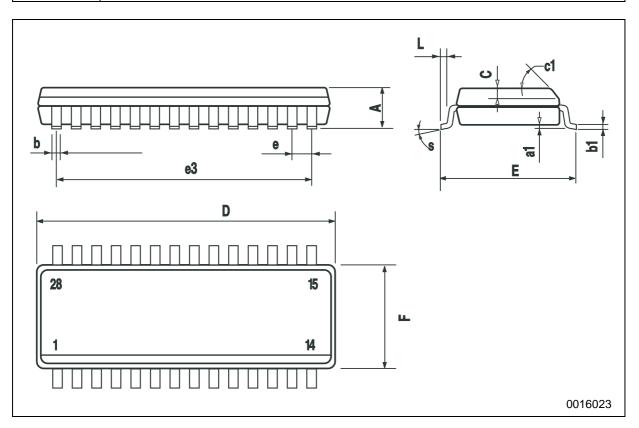
TIMING CHARACTERISTICS

(C₁ - C₄ = 0.1 μ F, V_{CC} = 3V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
D_R	Maximum Data Rate	$R_L = 3K\Omega$ $C_L = 1000pF$ one trasmitter switching	250			Kbps
t _{PHL} t _{PLH}	Receiver Propagation Delay	R_{IN} to R_{OUT} $C_L = 150pF$		0.15		μs
t _{T_SKEW}	Transmitter Skew			100		ns
t _{R_SKEW}	Receiver Skew			300		ns
S _{RT}	Transition Slew Rate	T_A = 25°C R _L = 3K to 7K Ω V _{CC} = 3.3V measured from +3V to -3V or -3V to +3V C _L = 150pF to 1000pF C _L = 150pF to 2500pF	6 4		30 30	V/μs V/μs

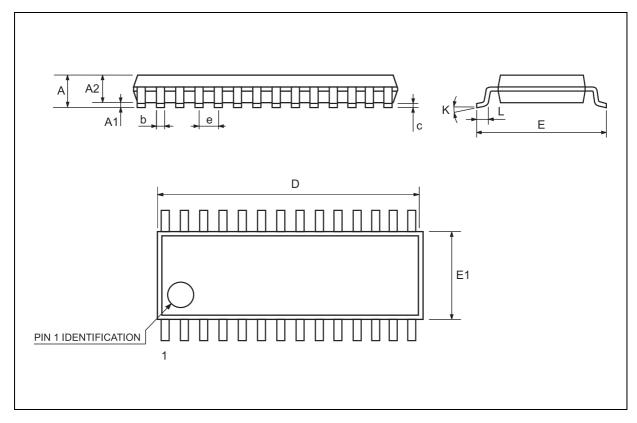
APPLICATION CIRCUITS




Figure 1 : REQUIRED MINIMUM CAPACITANCE VALUE (μF)

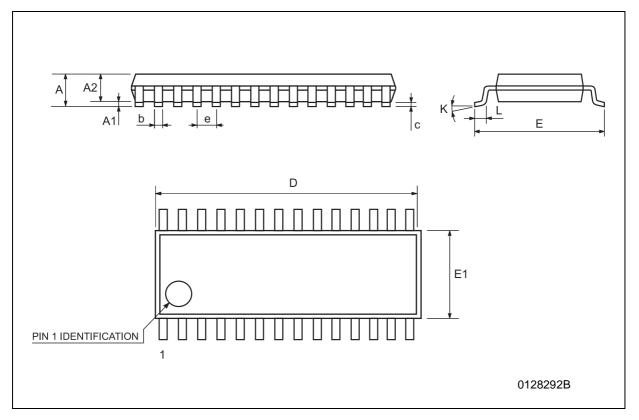
V _{CC} (V)	C ₁	C _{2,} C _{3,} C _{4,}	CBYPASS
3 to 3.6	0.1	0.1	0.1
4.5 to 5.5	0.047	0.33	0.1
3 to 5.5	0.1	0.47	0.1

6/10


SO-28 MECHANICAL DATA

DIM.	mm.			inch			
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			2.65			0.104	
a1	0.1		0.3	0.004		0.012	
b	0.35		0.49	0.014		0.019	
b1	0.23		0.32	0.009		0.012	
С		0.5			0.020		
c1	45° (typ.)						
D	17.70		18.10	0.697		0.713	
E	10.00		10.65	0.393		0.419	
е		1.27			0.050		
e3		16.51			0.650		
F	7.40		7.60	0.291		0.300	
L	0.50		1.27	0.020		0.050	
S	8 ° (max.)						

SSOP28 MECHANICAL DATA


DIM.	mm.			inch			
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
А			2			0.079	
A1	0.050			0.002			
A2	1.65	1.75	1.85	0.065	0.069	0.073	
b	0.22		0.38	0.009		0.015	
С	0.09		0.25	0.004		0.010	
D	9.9	10.2	10.5	0.390	0.402	0.413	
E	7.4	7.8	8.2	0.291	0.307	0.323	
E1	5	5.3	5.6	0.197	0.209	0.220	
е		0.65 BSC			0.0256 BSC		
К	0°		10°	0°		10°	
L	0.55	0.75	0.95	0.022	0.030	0.037	

8/10

TSSOP28 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
Α			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	9.6	9.7	9.8	0.378	0.382	0.386
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
е		0.65 BSC			0.0256 BSC	
К	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com

