查询STD1802供应商

捷多邦,专业PCB打样工厂,24小时加急出货

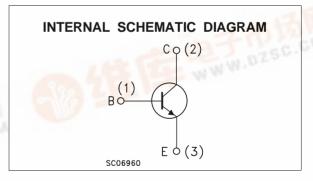
STD1802 LOW VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

Table 1: GENERAL FEATURES

Ordering Code	Marking	Shipment	
STD1802T4	D1802	Tape & Reel	

- VERY LOW COLLECTOR TO EMITTER SATURATION VOLTAGE
- HIGH CURRENT GAIN CHARACTERISTIC
- FAST-SWITCHING SPEED
- SURFACE-MOUNTING DPAK POWER PACKAGE IN TAPE & REEL (Suffix "T4")

APPLICATIONS:


- CCFL DRIVERS
- VOLTAGE REGULATORS
- RELAY DRIVERS
- HIGH EFFICIENCY LOW VOLTAGE SWITCHING APPLICATIONS

DESCRIPTION

The device is manufactured in NPN Planar Technology by using a "Base Island" layout. The resulting Transistor shows exceptional high gain performance coupled with very low saturation voltage.

PRELIMINARY DATA

Table 2: ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit V	
V _{CBO}	Collector-Base Voltage (I _E = 0)	80		
Vceo	Collector-Emitter Voltage (I _B = 0)	60		
V _{EBO}	Emitter-Base Voltage (I _C = 0)	6	V	
Ic	Collector Current	3		
I _{СМ}	Collector Peak Current (t _p < 5 ms)	6		
IB Base Current		1		
P_{tot} Total Dissipation at $T_{case} = 25 \ ^{\circ}C$		15		
T _{stg}	Storage Temperature	-65 to 150	°C	
Tj	Max. Operating Junction Temperature	150	°C	

Rev. 3

STD1802

Table 3: THERMAL DATA

R _{thj-case} Thermal Resistance Junction-case Max 8.33 °C	R _{thj-case}	Thermal Resistance Junction-case	Max	8 3 3	°C/W
--	-----------------------	----------------------------------	-----	-------	------

Table 4: ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \, {}^{\circ}C$ unless otherwise specified)

Symbol	Parameter			Min.	Тур.	Max.	Unit
Ісво	Collector Cut-off Current (I _E = 0)					0.1	μA
I _{EBO}	Emitter Cut-off Current $(I_C = 0)$	$V_{EB} = 4 V$				0.1	μA
V _{(BR)CBO}	Collector-Base Breakdown Voltage (I _E = 0)	I _C = 100 μA		80			V
V _{(BR)CEO*}	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = 1 mA		60			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	I _E = 100 μA		6			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_C = 2 A$ $I_C = 3 A$	I _B = 100 mA I _B = 150 mA		150 200	300 400	mV mV
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 2 A	I _B = 100 mA		0.9	1.2	V
h _{FE} *	DC Current Gain	I _C = 100 mA I _C = 3 A	V _{CE} = 2 V V _{CE} = 2 V	200 100		400	
f⊤	Transition frequency	V _{CE} = 10 V	I _C = 50 mA		150		MHz
Ссво	Collector-Base Capacitance	V _{CB} = 10 V	f = 1 MHz		50		pF
t _{ON} t _s t _f	RESISTIVE LOAD Turn- on Time Storage Time Fall Time	$I_{C} = 1 A$ $I_{B1} = -I_{B2} = 0.1 A$	V _{CC} = 30 V		50 1.35 120		ns μs ns

57

* Pulsed: Pulse duration = 300µs, duty cycle = 1.5 %

Figure 1: Derating Curve

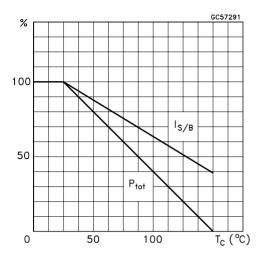


Figure 3: Collector-Emitter Saturation Voltage

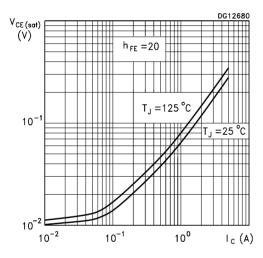


Figure 5: Base-Emitter Saturation Voltage

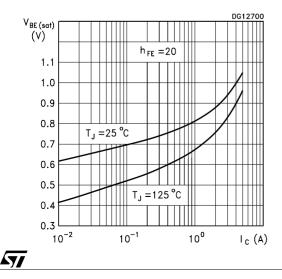


Figure 2: DC Current Gain

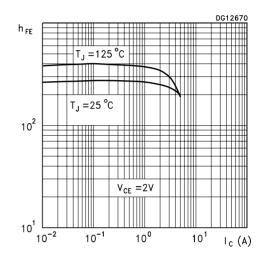


Figure 4: Collector-Emitter Saturation Voltage

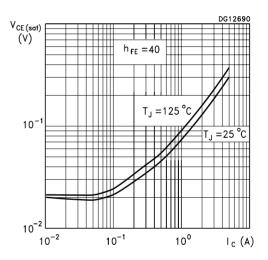
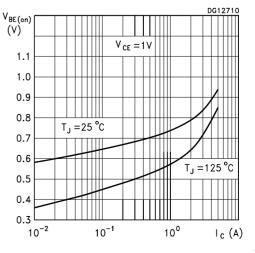



Figure 6: Base-Emitter On Voltage

STD1802

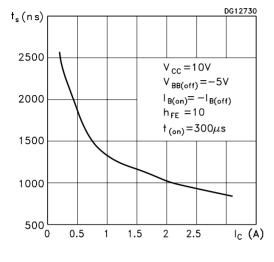


Figure 7: Switching Times Resistive Load

Figure 9: Switching Times Resistive Load

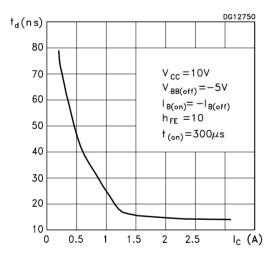
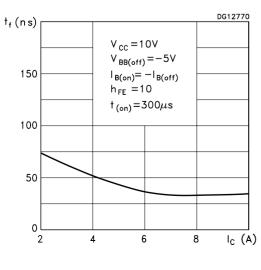
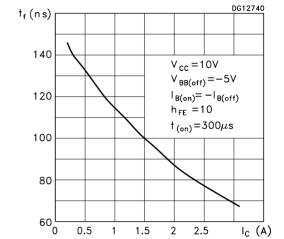
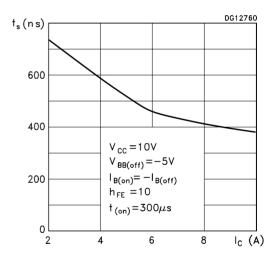



Figure 11: Switching Times Inductive Load

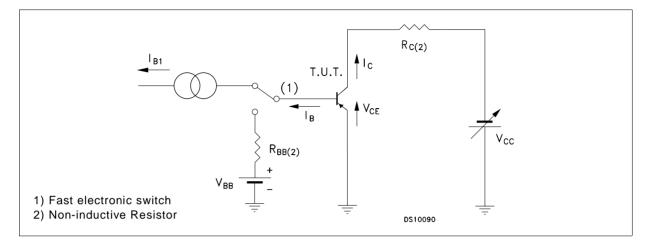
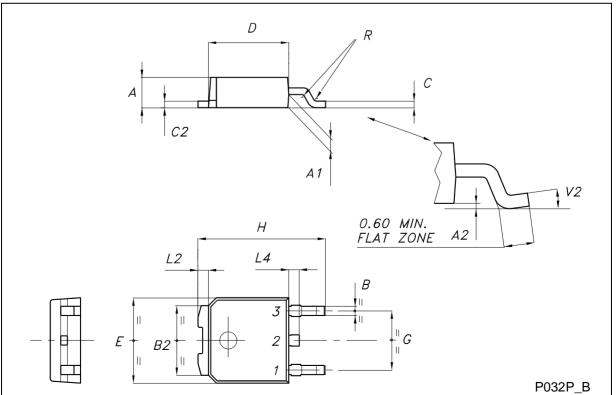

Figure 8: Switching Times Resistive Load

Figure 10: Switching Times Inductive Load

A7/

Figure 12: Resistive Load Switching Test Circuit.

Table 5: Revision History


57

Date	Revision	Description of Changes
12 July 2004	1	Third Revision

STD1802

DIM.	mm			inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	2.20		2.40	0.087		0.094	
A1	0.90		1.10	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.64		0.90	0.025		0.035	
B2	5.20		5.40	0.204		0.213	
С	0.45		0.60	0.018		0.024	
C2	0.48		0.60	0.019		0.024	
D	6.00		6.20	0.236		0.244	
E	6.40		6.60	0.252		0.260	
G	4.40		4.60	0.173		0.181	
Н	9.35		10.10	0.368		0.398	
L2		0.8			0.031		
L4	0.60		1.00	0.024		0.039	
V2	0°		8°	0°		0°	

TO-252 (DPAK) MECHANICAL DATA

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2004 STMicroelectronics – All Rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America.

http://www.st.com

57