
1/81

STLC1502

January 2002

This is preliminary information on a new product now in development. Details are subject to change without notice.
Revision: A04

1.0 GENERAL DESCRIPTION

STMicroelectronics’ STLC1502 is a high perfor-
mance VoIP processor specially targeted for the time
effective design of IP-Phones and analog gateway
applications bundled with a comprehensive embed-
ded software solution.

When used in the Enterprise LAN IP Phone space,
this device enables the augmentation and replace-
ment of traditional telephone systems with network
based communications systems running over local
and wide area IP networks. To design an IP phone,
the only other parts required will be an analog inter-
face, some optional Flash memory for upgradable
software and Fast Ethernet physical layer devices.
The ST complete IP Phone reference design in-
cludes standards compliant Application Program-
ming Interfaces (APIs), protocol management
software and software development tools.

The STLC1502 also has all the proper interfaces to
be a cost effective solution for Small Gateway appli-
cations. ST also offer a complete SW reference de-
sign for Small Gateway applications.

Hence, the STLC1502 enables a superior and cost
effective platform development for IP-phones as well
as voice gateway applications, providing developers
with a low risk, rapid time to market solution.

The STLC1502 integrates low power D950 DSP with
a ARM7/TDMI MCU and a dual port 10/100 Base-T
switched Ethernet media access control interface.

The main characteristics of the STLC1502 IP proces-
sor are as follows:

• HCMOS7 technology
• Power supply: Core 2.5 V and I/O: 3.3 V
• Industry standard 32-bit RISC microprocessor

(ARM7/TDMI core)

• 16-bit, fixed point 120 MIPs DSP (D950)
• Two 10/100 Base-T Ethernet MACs
• VLAN support
• Ethernet Bridge
• JTAG
• Smart power management

2.0 REFERENCE SOFTWARE FEATURES
Some of the features of the SW provided are:

ARM7/TDMI
• Industry standard Real time OS: VxWorks
• Network Protocol Stack
• TCP/IP, UDP, TFTP, DHCP, HTTP server
• Ethernet/PC communication drivers
• High Level Chip Control
• Stack management

• SNMP (optional)
• Application Specific MIBS

• Signalling Protocol
• MGCP, H.323 (including H.450), SIP

D950 Voice Codec Unit (VCU) features:
• G.711 Packetized PCM
• G.729AB, 8kbps CS-ACELP
• G.726, 16-40 kbps ADPCM
• G.723.1a, 6.3/5.3 kbps MP-MLQ
• Encoding and decoding of PCM sample

frames
• Packing/unpacking of compressed informa-

tion in Codewords
• Fax Modem : T.38 Fax Relay, V.21, V.17,

V.27ter and V.29 fax datapump

PQFP208
ORDERING NUMBER: STLC1502

VOICE OVER IP PROCESSOR

查询STLC1502供应商 捷多邦，专业PCB打样工厂，24小时加急出货

http://www.dzsc.com/stock_stlc1502.html
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

STLC1502

2/81

• Data Modem: V.34 datapump
• Rate selection
• High performance voice activity detector (VAD)
• Comfort noise generator (CNG)
• G.165 32 ms Line & acoustic echo canceller
• Low latency system implementation

Figure 1: Block diagram

3.0 SYSTEM OVERVIEW
Three main blocks can be identified in the device architecture: ARM domain, the D950 domain and the
Clocks tree domain.

3.1 ARM7 domain
The ARM domain is a multibus microprocessor system based on the ARM7TDMI processor.
• The system bus is based on the Advanced Microcontroller Bus Architecture (AMBA) that includes

two distinct buses:
• The Advanced High performance Bus (AHB) for high performances system modules
• The Advanced Peripheral Bus (APB) for low power peripherals.

• A high speed 32 bit data bus is provided to connect external memories.
• A controller for external static memory (ESM) and a controller for external dynamic memory (EDM)

are provided.
• Static memories, like FLASH EPROM, SRAM and dynamic memories like EDO, SDRAM, can be

3/81

STLC1502

connected on the same external 32 bits high speed bus
• Two MII interfaces can hook directly to two 10/100 Ethernet PHYs
• Internal control hardware manages the switching and MAC processing of frames on the two Ethernet

ports
• Standard serial communication ports are available for easy device connection
• The SPI port is mainly dedicated to the CODEC control. It is compatible with the STM codecs

STLC5046, STLC5048, STW5093. It is a standard SPI port and other peripherals can be connected
to it beside the codec

• I2C port can be use to connect a LCD driver in case of IP-phone application, and a serial EEPROM
for boot coded and configuration data storage

• GPIO block includes as an alternative function a scanning key encoder for direct interface with a 6x6
keypad matrix

• Debouncing function is performed, so no overhead for the ARM controller is introduced
• UART port allows connection to a host terminal. Code downloaded through UART can be performed

during boot
• A Host Processor Interface (HPI) allows direct connection of an external control processor. The inter-

face is directly compatible with the Motorola MPC850 external bus

3.2 D950 domain

The D950 domain is a DSP machine based on the D950 core.
• The D950 core is based on Harvard architecture with separate buses for instruction (I-bus) and data

(X-bus, Y-bus)
• The internal ROM runs basic system management code and standard vocoders

G711,G723.1A,G729AB that are included in the H.323 specification
• Additional vocoders and algorithms are downloaded from the ARM side through the DPRAM
• External CODEC is connected with a standard four wires PCM bus interface
• JTAG and emulation port are available for system software/hardware testing
• DPRAM is used as a communication channel between the ARM and D950
• Control messages and voice packets are exchanged through the DPRAM
• Fax over IP support

3.3 Clock Domain
Three main clock domains are present:

• D950 and peripherals (100 MHz max)

• ARM7 and peripherals (60 MHz max)

• PCM (8.192 MHz max)

The clock base is provided by a fixed external 25MHz crystal/oscillator. A 25MHz clock output can be used
as a master clock for external Ethernet PHY devices, in 10BaseT operation.
NOTE: For 100BaseT operation, this clock may not be sufficiently stable with tight jitter requirements.
Thus the PHY’s may need their own 25 MHz crystal.
Internal PLL’s provide independent clocks to the D950 and ARM7 domain.
The ARM frequency is set by external pin, that selects between 50 MHz and 60 MHz.
The D950 frequency can be set by the ARM via Status register programming.
Four possible values are provided:
100 MHz
180 MHz
190 MHz

STLC1502

4/81

200 MHz

To change the D950 master clock frequency the following procedure must be followed:
1) Disable the D950 clock, by resetting the DCLK bit in the control register of the MISC Control register.
2) Wait 10 ARM cycles
3) Select a new D950 master clock, by writing the MISC Status register.
4) Wait 4 ms
5) Disable the D950 clock, by setting the DCLK bit in the MISC Control register.

An Internal divider provides an internal PCM clock, 2083 KHz, that is not exactly the standard 2048 KHz.
- An external PCM clock frequency can be applied using a dedicated crystal or oscillator, to provide exactly
8KHz synch and sampling clock on the PCM bus. (External pins configuration Testsel[3:0] at [0011]).

The PCM clock rate can be selected via software to achieve the following values:
1536 (24 Ch.) 2048 (32 Ch.) 4096 (64 Ch.) 8192 KHz (128 Ch.).
- The PCM clock and Frame synch signals can be selected as inputs or outputs, by programming the con-
trol register in the miscellaneous block.

 4.0 Pin Descriptions
The STLC1502 will be delivered in:
• PQFP 208 Pins

5/81

STLC1502

Figure 2: 208-Pin PQFP

 4.1 Pin Description Table

Pin Pin Name Pin Description/Note Pin
Drive

Pin
Type

Clocks, Reset

41 xtalin 25 MHz crystal input Master clock
or DSP clock in PLL bypass mode

I

42 xtalout 25 MHz crystal feedback O

43 pxtalin 8.192 MHz crystal input PCM I/F
Clock or PCM input clock in PLL

bypass mode

I

STLC1502

6/81

44 pxtalout 8.192 MHz crystal feedback O

45 edmiclk SDRAM feedback clock (input) 8mA I/O

46 testarmclk ARM clock in bypass mode I

52 selarmfreq Selects ARM PII Vco frequency I

53 rstn Asynchronous Master Reset Input I

188 clkout 25MHz master clock out 4mA O

Miscellaneous

47 bootsel_treqa Boot selection: Select internal [1]
or external [0] booting ROM. If

proper test configuration has been
selected, then signal assumes Tic

request A functionality

I

118 hpisel Select between HPI[1] or
GPIO_KBD IF [0]

I

Memory I/F (shared signals)

125, 126, 127, 129,
130, 131, 133, 134,
135, 136, 137, 138,

140, 141

add[0..13] Memory address bus.
For Dynamic RAM, they are the

whole address, whereas for static,
they are the LSBits addresses. At

power up or hardware reset all
address values are 0

4mA O

62, 63, 64, 65, 66, 69,
70, 71, 72, 73, 74, 75,
77, 78, 79, 81, 82, 84,
85, 86, 88, 89, 91, 92,

93, 95, 96, 98, 99,
100, 102, 103

data[0..31] Memory data bus, to exchange
data between memory controller

and external memories

8mA I/O

2, 3, 4, 5 wenbsn[0..3] Write byte enable for external
static RAM or byte strobe for

dynamic external RAM

8mA O

6 oen Output enable for static/dynamic
external RAM. At power up or

hardware reset, the signal will be
asserted if the external booting

(bootsel = ‘1’) has been selected

8mA O

ESM (specific controls)

 142, 144, 145, 146,
148, 149, 150, 152

add[14..21] Memory address bus’ MSBits.
They complete the ESM

addressability. A total of 4Mbyte
external (FLASH/SRAM) address

space is addressed by the
STLC1502 device. At the first fetch

of instruction after power_up or
hardware reset, all address values

are ‘0’

4mA O

Pin Pin Name Pin Description/Note Pin
Drive

Pin
Type

7/81

STLC1502

153, 154, 155 esmcs[0..2]n Chip select [0..2] for external
memory (FLASH/SRAM). At

power up or hardware reset, if
external boot ROM has been

selected, (bootsel =’1’) the signal
is asserted during the fetch

instruction, else the selection
depends on internal address

mapping

4mA O

61 ecs0width External FLASH/SRAM Data bus
size: if settled to ‘L’, select a 8 bit

parallelism data.

I

EDM (specific controls)

156, 158, 159, 160 edmcsn[0..3] Chip select for SDRAM or RAS for
EDO DRAM

8mA O

161 edmclken SDRAM clock enable 8mA O

162 edmoclk SDRAM output clock 8mA O

165 edmras SDRAM ras command 8mA O

166 edmcas SDRAM cas command 8mA O

167 edmwe SDRAM we command 8mA O

MII Interface Port # 1

168 mii1_txen Transmit enable 4mA O

169 mii1_txclk Transmit clock reference for txd,
txen, txer

I

170, 171, 174, 175 mii1_txd[0..3] Transmit data bus 4mA O

176 mii1_rxclk Receive clock reference for rxd,
rxdv, rxer

I

177 mii1_rxdv Receive data valid I

178 mii1_rxer Receive error signal, indicates an
error condition on receiving data

I

181, 182, 183, 184 mii1_rxd[0..3] Receive data bus I

185 mii1_col Collision signal I

186 mii1_crs Carrier sense indication I

MII Interface Port # 2

193 mii2_txclk Transmit clock reference for txd,
txen, txer

I

194 mii2_txen Transmit enable 4mA O

195, 196, 197, 198 mii2_txd[0..3] Transmit data bus 4mA O

Pin Pin Name Pin Description/Note Pin
Drive

Pin
Type

STLC1502

8/81

200 mii2_rxclk Receive clock reference for rxd,
rxdv, rxer

I

201 mii2_rxdv Receive data valid I

202 mii2_rxer Receive error signal, indicates an
error condition on receiving data

I

203, 204, 205, 206 mii2_rxd[0..3] Receive data bus I

207 mii2_col Collision signal I

208 mii2_crs Carrier sense indication I

PHY I/F Management

189 mdc MII management clock 4mA O

190 mdio MII management data i/o 4mA I/O

UART I/F

112 sin Serial data input I

113 sout Serial data output 2mA O

I2C I/F

116 scl I2C clock 2mA I/O

117 sda I2C data 2mA I/O

PCM I/F

104 pdx PCM Downstream data I

105 pdr PCM Upstream data 2mA O

106 pfs PCM Input/Output Frame
synchronization

2mA I/O

107 pdc PCM Input/Output Data clock 4mA I/O

SPI I/F

109 sck SPI interface Clock 2mA O

110 smi SPI master data input I

111 smo SPI master data output 2mA O

KBD/GPIO/HPI I/F

9 gpio0_r1_hpidata0 GPIO[0] or keypad matrix row 1 or
Hpidata[0]

4mA I/O

10 gpio1_r2_hpidata1 GPIO[1] or keypad matrix row 2 or
Hpidata[1]

4mA I/O

11 gpio2_r3_hpidata2 GPIO[2] or keypad matrix row 3 or
Hpidata[2]

4mA I/O

Pin Pin Name Pin Description/Note Pin
Drive

Pin
Type

9/81

STLC1502

14 gpio3_r4_hpidata3 GPIO[3] or keypad matrix row 4 or
Hpidata[3]

4mA I/O

15 gpio4_r5_hpidata4 GPIO[4] or keypad matrix row 5 or
Hpidata[4]

4mA I/O

16 gpio5_r6_hpidata5 GPIO[5] or keypad matrix row 6 or
Hpidata[5]

4mA I/O

17 gpio6_c1_hpidata6 GPIO[6] or keypad matrix col 1 or
Hpidata[6]

2mA I/O

18 gpio7_c2_hpidata7 GPIO[7] or keypad matrix col 2 or
Hpidata[7]

2mA I/O

19 gpio8_c3_hpiadr0 GPIO[8] or keypad matrix col 3 or
Hpiadr[0]

2mA I/O

20 gpio9_c4_hpiadr1 GPIO[9] or keypad matrix col 4 or
Hpiadr[1]

2mA I/O

23 gpio10_c5_hpiadr2 GPIO[10] or keypad matrix col 5 or
Hpiadr[2]

2mA I/O

24 gpio11_c6_hpiclk GPIO[11] or keypad matrix col 6 or
Hpiclk input

2mA I/O

25 gpio12_dreq GPIO[12] or Dma input request
(software selection)

2mA I/O

26 gpio13_dack GPIO[13] or Dma output
acknowledge (software selection)

2mA I/O

27 gpio14_hpics_d950idle GPIO[14] or Hpi Chip Select
(active low) or D950 emulator

output idle state

2mA I/O

28 gpio15_hpias_d950snap GPIO[15] or Hpi Address Strobe
(active low) or D950 snap output

sate

2mA I/O

29 gpio16_hpirw_treqb GPIO[16] or Hpi Read (active
high) Write (active low) strobe or

Tic request B input. The Tic mode
is forced selecting the proper test
configuration through testsel[3..0]

pin

2mA I/O

30 gpio17_hpiint_tack GPIO[17] or Hpi Interrupt out or
Tic acknowledge output. The Tic

mode is forced selecting the
proper test configuration through

testsel[3..0] pin

2mA I/O

33 gpio18_irq1 GPIO[18] and External interrupt
input 1

2mA I/O

Pin Pin Name Pin Description/Note Pin
Drive

Pin
Type

STLC1502

10/81

 5.0 ARM Memory Configuration

• The AMBA bus system allows to handle memory blocks and peripherals on distinct buses, in order to
optimize the AHB architecture for maximum speed.

34 gpio19_irq2 GPIO[19] and External interrupt
input 2

2mA I/O

Test Signal

55, 56, 57, 58 testsel[0..3] Test mode selection I

Stradivarius STLC1502 and/or ARM’s JTAG

119 tdi Data input I

120 tdo Data output 2mA O

121 tms Test mode select I

122 tck Clock I

123 trstn Jtag Input Reset I

D950’s JTAG

35 d950tdi Data input I

36 d950tdo Data output 2mA O

37 d950tms TMS command I

38 d950tck Clock I

39 d950trstn Reset Input I

D950’s EMU signals

54 d950erqn Halt request to enter emulation
mode

I

Power and Ground pins

1, 12, 21, 31, 67, 76,
83, 90, 97, 124, 132,
139, 147, 164, 180,

192, 199

vdd3 I/O Power P

7, 13, 22, 32, 40, 51,
60, 68, 80, 87, 94,
101, 108, 115, 128,
143, 151, 157, 163,

173, 179, 191

gnd Core ground P

8, 48, 59, 114, 172,
187

vdd Core Power P

49 PLL_VSS PLL digital ground P

50 PLL_VDD PLL analog power supply 2.5V P

Pin Pin Name Pin Description/Note Pin
Drive

Pin
Type

11/81

STLC1502

• The memory blocks are attached to the AHB bus so ARM code can run at maximum speed.
• An internal ROM is used to store boot code that polls serial peripherals (I2C EEPROM, UART) and

HPI for code download in external RAM. After download, the control is given to code in external
RAM.

• An internal RAM is used to store ARM7 interrupt vectors and some data (network frames)
• Four external memory types can be connected.

• Flash
• SRAM
• DRAM (SDRAM or EDO)
• Serial EEPROM

• Flash, SRAM, DRAM share the same 32 bits data bus and 32 bits address bus. Little/Big endian
mode is software programmable for the DRAM memory controller. Serial EEPROM can be con-
nected to the I2C bus.

• The chip provides the option of booting from Flash or from serial EEPROM, by selection from an
external BOOT_SEL pin. So different memory configurations are possible depending on the applica-
tion:

1. Flash, DRAM: The boot code including BOOTP and TFTP is stored in Flash. Application can be
stored in flash also, or can be downloaded into DRAM from Ethernet Network or UART.

2. EEPROM, DRAM: The boot is performed from internal ROM. The ROM code loads the code stored
in EPROM that includes BOOTP and TFTP. Application code will be downloaded into DRAM from
Ethernet or UART.

3. Flash, DRAM, EEPROM: It is like case 1, but has more flexibility. The EEPROM can be used to store
Network parameter data (MAC address) and other specific board data, so the code to store in flash is
the same for all the platforms, and you do not need to split the flash in a permanent storage area and
in an upgradable storage area. The EEPROM can also be used to allow the programming of the flash
the first time with a code downloaded from Ethernet Network.

4. DRAM: The boot is performed from internal ROM. The application code is downloaded from the host
processor through the HPI interface. To access external memory bus an internal decoder is imple-
mented, that can select different external memory devices. 32 bits data bus is provided with the pos-
sibility to select external accesses at 16 and 8 bits for each memory bank. For example the flash can
be at 16 bits and the DRAM at 32 bits. There are 3 chip select available for static memory (4Mbytes
each), 4 chip selects for dynamic memory (8Mbytes each).

 5.1 ARM Memory Map
The ARM microprocessor sees 5 main memory areas.

Actually the memory map depends on the phase the microprocessor is working on:
• Boot from internal ROM phase (REMAP=0 and BOOT_SEL=0);
• Boot from external Flash phase (REMAP=0 and BOOT_SEL=1);
• Operating phase (REMAP=1).

The first two phases are alternative (only one of them happens at the power on reset, while the third happens
after the boot.

6.0 AHB Bus

AHB Bus is a 32 bits data and 32 bits address bus.

6.1 Internal RAM

An internal Static RAM 2048x 32 is mapped starting at address 0x0 in operational mode and is used for ARM
interrupt vector tables.

STLC1502

12/81

 6.2 ESM interface

• The ESM (External Static Memory) interface is used to access static RAMs or Flash devices. It pro-
vides 3 chip select signals and gives external access to 21 address bits, so that the memory space
accessible through each chip select is 4 Mbytes.

• The data bus on ESM external interface is 32bits wide, with the additional ability to perform 16 and 8
bits accesses. Little endian byte ordering is used. The data bus and address bus pins are shared with
the DRAM driver, using EBI interface.

• Programmable per chip-select wait-states from 0 to 15 internal clock cycles are available.
• At reset, every CS space has 15 wait states. The actual value is contained in the downloaded code.
• The external memory spaces are mapped by the ESM interface as reported in Figure 4.
• There are 3 addressable memory spaces 0x00400000 byte long each.

Figure 4: ESM memory map

Following is the list of the available external signals that implement SRAM or FLASH read and write cycles. Data
and address buses are not shown as they are shared with the DRAM EBI interface.

NAME Signal type Description

ESM_CS(2:0) OUT Chip Select. Asserted when the
ESM decodes the proper address
space in order to select the right
external device

OE OUT Output Enable. Asserted during a
read cycle (shared with EDM)

External
ESM

04000000
ESM_CS1

ESM_CS0

ESM_CS2

Reserved

04000000

043FFFFF

047FFFFF
04800000

04BFFFFF

07FFFFFF

07FFFFFF

04400000

04C00000
Memories

13/81

STLC1502

A scheme of the ESM control interface is reported in Figure 5.

Figure 5: ESM control interface

Every CS space can be programmed through internal register (one for each CS) in order to:
• select the number of wait states to perform external access depending on the speed of the external

device mapped on that memory area
• select if the data bus is x8 or x16 (available only for CS1 to CS2). When the x8 memories are used,

their data bus has to be placed on the ESM_D(7:0) signals

The wait states number for the external memories (depending on memory access time) is obtained from the
software code during the download phase. During the initialization phase, it is the responsibility of the software
to determine if a SRAM or a FLASH is present or not on a given CS space and the width of CS1-2 memories (if

WE[3:0] OUT Bytes Write enable. They are
used to select one/two bytes
when a x16/x32 Flash/SRAM is
present (shared with EDM).
0: lower byte
1: 2nd byte
2: 3rd byte
3: higher byte

ESM_CS0WIDTH IN This input informs whether a x8
(ESM_CS0WIDTH=0) or x16
(ESM_CS0WIDTH=1) device is
present on the CS0. This informa-
tion is needed the boot from exter-
nal memory is selected.

A[21:0] OUT 22 Address lines for up to
4Mbytes address space (shared
with EDM A[13:0])

D[31:0] INOUT Data bus(shared with EDM bus)

NAME Signal type Description

ESM_CS(2:0)
OE
WE[3:0]

external sidedevice side

ESM_CS0WIDTH

STLC1502

14/81

present).

It is possible to connect every CSx to a Dual Port SRAM and use that as a communication mailbox between the
device and an external microprocessor. For example, the microprocessor can write a message in the memory
using one port and can send an interrupt to the device so that the execution routine related with that interrupt
can read from the other port of the memory connected to the same CSx of the ESM.

Viceversa, the ESM can write a message in the memory and then can send an interrupt to the external micro-
processor that will read the message from the other port of the memory.

The SRAM and the FLASH devices that are used as references are standard.

 6.2.1 ESM address decoding scheme
The ESM block includes also a decoder in order to generate the proper CS to the external device. In particular
this decoder will work on the bit 22,23,24 and 25 of the internal ARM address bus.

ESM decoding scheme

 6.2.2 ESM Register Map [0x0C600000]
The base address of the ESM register is 0x0C600000.

 6.3 EDM interface
The EDM interface is used to access external DRAMs. This block supports both EDO and SDRAM interfaces
with enough flexibility to be used with several DRAM chips available in the market. This block has a separate
bus for control (the registers are placed on the APB bus) and for data (data and address are placed on the ASB
bus) and also includes an external bus interface that allows to share address and data bus pins with the static
ESM interface.

Figure 6 shows a block diagram of the EDM block.

ESM decoder ESM_A(21:0)

Address Register
Name

R/W Notes

ESMBase + 0x00 CS0 R/W CS0 bank control

ESMBase + 0x04 CS1 R/W CS1 bank control

ESMBase + 0x08 CS2 R/W CS2 bank control

15/81

STLC1502

R
efresh

E
S

M

R
eg

isters

A
H

B
interface

E
xternal S

tatic

D
ata

M
ux

E
xternal

bus
interface

A
H

B
bus

A
P

B
bus

C
ontrol

A
ddress

D
ata

M
em

ory
driver

M
em

ory C
ontroller

T
IC

STLC1502

16/81

Figure 6: EDM block diagram

It is possible to connect up to 4 external chips with x8, x16, and x32 data bus. Each memory bank space is
8Mbytes big so that a standard 64Mbit DRAM device can be connected. It is not possible to use a single
32Mbytes memory device.

It is the responsibility of the ARM code to properly configure the EDM block to initialize the DRAM at startup.

The external memory is mapped by the EDM interface as shown in Fig. 7.

Figure 7: EDM memory map

In the following table there is the list of the available external signals of the EDM interface.

NAME Signal type Description

EDM_CS(3:0) OUT Chip Select. Asserted when the EDM
decodes the proper address space in order
to select the right external device. To be con-
nected to RAS signal in case of use of EDO
memories

EDM_CLK OUT SDRAM Memory clock (same as ARM
clock). Not used with EDO.

EDM_CLKEN OUT SDRAM clock enable. Not used with EDO.

External

EDM

11800000

EDM_CS0

EDM_CS1

EDM_CS2

EDM_CS3

13FFFFFF

117FFFFF

11000000

10FFFFFF

10800000

107FFFFF

10000000

Reserved

11FFFFFF

12000000

10000000

13FFFFFF

DRAM

17/81

STLC1502

The EDM block includes a decoder in order to generate proper CS to the external device. In particular this de-
coder will work on bits 25 and 26 of internal ARM address bus.

EDM decoding scheme

• Every CS space can be programmed through internal register in order to configure the EDM to work
with the proper external device

• The DRAM Controller has nine registers, the configuration register, four bank registers and four
SDRAM configuration registers. The registers are accesses via the APB bus. The register data path
is 16 bits wide.

 6.3.1 EDM Register Map [0x0C580000]
• The base address of the EDM register is 0x0C580000

EDM_RAS OUT SDRAM RAS signal. Not used with EDO.

EDM_CAS OUT SDRAM CAS signal. Not used with EDO

OEN OUT SRAM Output Enable. Not used with
SDRAM

EDM_WE OUT DRAM Write Enable

EDM_BS(3:0) OUT SDRAM byte strobe. CAS when EDO memo-
ries are used

EDM_A(21::0) OUT DRAM address lines, only 14 lines are
driven.. Lines.21:14 are driven by static
memory controller

EDM_D(31:0) INOUT DRAM data lines, shared with static memory
controller lines.

EDM
Decoder

EDM_A(13:0)

Address Register
Name

R/W Notes

EDMBase +
0x00

MB1Config R/W Memory Bank 1 Configuration Register

EDMBase +
0x04

MB2Config R/W Memory Bank 2 Configuration Register

NAME Signal type Description

STLC1502

18/81

 6.3.1.1 Memory Bank Configuration registers
Memory bank configuration registers are used to setup memory bank specific parameters:

DEVWID: Device Width

EDMBase +
0x08

MB3Config R/W Memory Bank 3 Configuration Register

EDMBase +
0x0C

MB4Config R/W Memory Bank 4 Configuration Register

EDMBase +
0x10

SDRAM1C
onfigLo

WO Memory Bank 1 Low SDRAM Configura-
tion Register

EDMBase +
0x14

SDRAM1C
onfigHi

WO Memory Bank 1 High SDRAM Configura-
tion Register

EDMBase +
0x18

SDRAM2C
onfigLo

WO Memory Bank 2 Low SDRAM Configura-
tion Register

EDMBase +
0x1C

SDRAM2C
onfigHi

WO Memory Bank 2 High SDRAM Configura-
tion Register

EDMBase +
0x20

SDRAM3C
onfigLo

WO Memory Bank 3 Low SDRAM Configura-
tion Register

EDMBase +
0x24

SDRAM3C
onfigHi

WO Memory Bank 3 High SDRAM Configura-
tion Register

EDMBase +
0x28

SDRAM4C
onfigLo

WO Memory Bank 4Low SDRAM Configura-
tion Register

EDMBase +
0x2C

SDRAM4C
onfigHi

WO Memory Bank 4 High SDRAM Configura-
tion Register

EDMBase +
0x30

MemConfig R/W Memory Configuration Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DEVWID DATA-
LAT

SETUP TIME IDLETIME SDRAM-
COL

Address Register
Name

R/W Notes

19/81

STLC1502

• Defines the data width of the external memory device:
• 00 - Byte (8 bit)
• 01 - Half Word (16 bit)
• 10 - Word (32 bit)

DATALAT: Data Latency
• Defines the number of memory clock cycles between the start of a memory read access and the first

valid data.
• The DATALAT value is valid between 0 and 3.

SETUPTIME: Setup Time
• Defines the number of memory clock cycles the memory driver spends in the DECODE state before

accessing the external memory.
• The SETUPTIME value is valid between 0 and 7.

IDLETIME: Idle Time
• Defines the minimum time the memory driver must spend in the IDLE state following memory

accesses.
• The value defines the number of Memory Clock cycles.
• The IDLETIME value is valid between 0 and 7.

SDRAMCOL: SDRAM Column Width Definition
• Specifies the width of the SDRAM column address:
• 00 - 8 bits
• 01 - 9 bits
• 10 - 10 bits
• 11 - reserved

 6.3.1.2 SDRAM Configuration registers

These registers are write only. A write access to the high registers will start the SDRAM configuration cycle,
during which the value written to the register will be asserted on the memory bus for a one clock period.

Low SDRAM Configuration Registers

MIAB: Memory Interface Address Bus

High SDRAM Configuration Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved MIAB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved MIVE MIAA MISA

STLC1502

20/81

MIAB: Memory Interface Address Bus

MIWE: Memory Interface Write Enable

MIAA: Memory Interface Access Active (nCAS)

MISA: Memory Interface Setup Active (nRAS)

After the power-up the CPU must configure each SDRAM device, i.e. perform precharge-refresh-mode register
set procedure.

 6.3.1.3 Memory Configuration register

Memory configuration registers are used to setup parameters that are same for all banks:

PWS: Power save mode
• If PWS bit is set to’1’, the next refresh cycle will set the memory devices in the self-refresh mode.
• The memories will exit the self-refresh mode, when the PWS mode is set to’0’.

TYPE: Memory type:
• The TYPE bit is used to select a type of the external memory.
• 1 - SDRAM
• 0 - EDO

B3EN: Bank 3 enable

B2EN: Bank 2 enable

B1EN: Bank 1 enable

B0EN: Bank 0 enable
• The bank enable bits are used to enable each bank separately.
• If an AHB transfer is accessing a disabled bank, the DRAM Controller will return the error response

to the AHB master.

REFR: Refresh period
• The REFR value is used to determine the refresh period. The period can be set in the 1 us steps.
• REFR Refresh Period
• 00000000 Refresh is disabled
• 00000001 Refresh period is 1us
• 00000010 Refresh period is 2us
• .
• 11111111 Refresh period is 255us

 6.4 DMA Controller
• The DMA controller is intended to be used with the Ethernet switch block to transfer Ethernet frames

between the Ethernet switch buffers and memory.
• The DMAC needs initialization before starting operation. During operation it does not need interven-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved PWS TYPE B3EN B2EN B1EN B0EN REFR

21/81

STLC1502

tion from the ARM controller.
• In receive, when the complete frame is stored in memory, the DMAC asserts the interrupt for the

ARM that can read the frame.
• In transmit the DMAC provides an interrupt when the complete frame is transferred.

 6.5 Ethernet Switch
The Ethernet switch block interfaces two MAC cores to implement a 3-port Ethernet Fast switch and MAC layer
for the Embedded VoIP network software.

Main features of the block are:
• Internal FIFOs for easy DMA transfers.
• Full duplex support using separate Tx, Rx FIFOs.
• Fast switching using hardware connections between the two MAC cores. ARM microcontroller is not

involved in the switching function.
• Support for priority mechanism for voice packets, using store-and-forward procedure for incoming

data packets.
• VLAN support
• 10/100 Mb/s data transfer rates
• The MAC cores provide 2 MII interfaces to connect two external PHYs.

The device works normally as a bidirectional switch between the two ports. When the following conditions hap-
pen the device triggers additional operations:
• Received frame destination MAC address matches device MAC address. The frame is transferred to

memory using DMA, and is not switched to the other port.
• A frame has to be transmitted by the device. In this case the block waits for the end of the current

frame being switched if any. If the frame is a voice frame, as soon as the line is free the block starts
transfer of the frame. Eventual incoming frames in the same direction are stored and forwarded after
the voice frame has been sent.

The block diagram of the Ethernet switch is shown below:

STLC1502

22/81

M
A

C

M
II1

D
M

A
_M

A
C

E
thernet

sw
itching

m
em

ory

B
ridge/arbiter

Internal bus

A
H

B
 bus

M
A

C

M
II2

D
M

A
_M

A
C

A
P

B
 bus

A
P

B
 bus

C
onfig

C
ontrol

registers

C
onfig

C
ontrol

registers

23/81

STLC1502

 6.5.1 The DMA Descriptors Chain
 The Descriptor list is the mean the CPU and the DMA_MAC use to communicate each other in order to
transmit/receive frames on the cable. This list must be properly prepared before initiating any transfer
activity to/from the cable. The Descriptor is produced by the CPU and consumed by the DMA_MAC.

• A Descriptor is a 16-bytes element which provides the DMA_MAC with information about how to

transmit/receive a single frame and how to report the transfer status back to the CPU.
• A Descriptor can be stored in any main memory location with a 32-bit aligned address.
• The first 3 words stored in a Descriptor are expected to be the values of the 3 DMA_MAC registers

describing a DMA transfer (DMA_Cntl, DMA_Addr and DMA_Next). When the DMA_MAC fetches a
Descriptor it loads this three values into its own corresponding registers.

• The last word is to be used by the DMA_MAC to report the transfer status.

6.5.2 The Descriptor control bits
The Descriptor keeps information about a single frame transfer and how to access the next Descriptor.
The following discussion is related to 3 bits of the Descriptor: the VALID bit, the NXT_EN bit and the
NPOL_EN bit.

The Descriptor can be accessed simultaneously by the CPU and the DMA_MAC. This concurrent access
is synchronized by the VALID bit in the DMA_Cntl register. When the VALID bit is equal to 0 then the
CPU is the owner of the Descriptor. Otherwise the owner is the DMA_MAC. Since the Descriptor can be
accessed in write mode by the owner only at any time, race conditions are guaranteed to never happen.

The NXT_EN bit enables the fetch of the Next Descriptor. When the DMA_MAC finds this bit set to 0 then
its activity is considered to be completed as soon as the current descriptor DMA transfers have been
completed.

The NPOL_EN bit enables the DMA_MAC to keep polling for a non-valid Descriptor until its VALID bit is
set to one. When the DMA_MAC finds both the NPOL_EN bit and the VALID bit set to 0 then its activity is
considered to be completed.

DMA_Cntl

DMA_Addr

DMA_Next

Tx/Rx_Status

DMA_Cntl

DMA_Addr

DMA_Next

Tx/Rx_Status

DMA_Cntl

DMA_Addr

DMA_Next

Tx/Rx_Status

Frame 0 Frame 1 Frame n

. . .
Descr 1 Descr 2 Descr n
(4 X 4 Bytes) (4 X 4 Bytes) (4 X 4 Bytes)

STLC1502

24/81

6.5.3 Transfer interrupts
The DMA_MAC can interrupt the CPU with three different levels of information about transfer completion.
The CPU can choose which interrupt needs to be enabled. They do not exclude each other though; they
can be all three enabled at the same time.

The TX_CURR_DONE (RX_CURR_DONE) interrupt bit reports the CPU when a single Descriptor (i.e.
one frame) has been completely treated by the DMA_MAC and the CPU is again the owner (VALID bit
set to 0).

The TX_NEXT (RX_NEXT) interrupt bit is set when next descriptor fetch is enabled (NXT_EN=1 in the
current descriptor) the next Descriptor is not valid (VALID bit is off).

The TX_DONE (RX_DONE) interrupt bit is set when a whole DMA transfer is complete. This can happen
either when the current is the last Descriptor in the chain (NXT_EN is off) or when the next Descriptor is
not valid yet (VALID bit is off) and the polling is disabled (NPOL_EN bit is off).

6.5.4 Frames transmission (TX)
When the CPU wants to transmit a set of frames on the cable, it needs to provide the DMA_MAC with a
Descriptor list. The CPU is expected to allocate a Descriptor for each frame it wants to send, to fill it with
the DMA control information and the pointer to the frame, and to link the Descriptor in the chain. The
frames will be sent on the cable in the same order they are found in the chain.

6.5.6 Open list approach
The simplest way to construct a Descriptor chain is the open list approach. Every Descriptor but the last
one will have the DMA_Next field pointing to the next Descriptor in the chain, the NXT_EN bit and the
VALID bit on, the NPOL_EN bit on/off. The last Descriptor will be set in the same way except for the
NXT_EN bit (off) and the DMA_Next field (NULL).

• The CPU starts the DMA activity loading the physical location of the first Descriptor into the DMA
Next register of the DMA_MAC and set the DMA Start register enable bit to on.

• The DMA_MAC will then keep fetching the Descriptors one by one until it finds the NXT_EN bit of the
last Descriptor set to off. Every time it completes a Descriptor (frame) it saves the transfer status into
TxRx_Status, it turns the Descriptor VALID bit to off and raises the TX_CURR_DONE interrupt bit.

• When the NXT_EN bit is found to be off, that means the DMA_MAC has fetched the last Descriptor in
the chain. When it completes also this Descriptor (the end of the DMA transfer) it raises both the
TX_CURR_DONE and the TX_DONE interrupt bits.

6.5.7 Closed list approach

The approach above is easy since it doesn’t require the DMA_MAC and the CPU to synchronize their ac-
cess to the Descriptor chain. The problem is that it requires the CPU to build the list every time it needs a
transfer.

A faster way to operate is building a closed Descriptor list only the first time and using the VALID bit to
mark the end of the transfer. The polling facility could also be used to save the CPU from the activity of
programming the DMA Start register every time it needs to start the DMA transfer. Instead, the DMA Start
register will be activated only once and the DMA_MAC will keep polling the invalid descriptor, raising
each time the TX_NEXT interrupt bit (if enabled), until the CPU finally sets its VALID bit to on. Since the
DMA transfer practically never ends, note that in this case the TX_DONE interrupt bit is never raised.

25/81

STLC1502

With this approach every Descriptor will have the DMA_Next field pointing to the next Descriptor in the
chain (the last one will point to the first one), the NXT_EN bit, the VALID bit and the NPOL_EN bit on.

The DMA_MAC will keep fetching the Descriptors one by one until it finds one with its VALID bit set to off.
Every time the DMA_MAC completes a Descriptor (frame) it saves the transfer status into TxRx_Status,
it turns its VALID bit to off and raises the TX_CURR_DONE interrupt bit.

6.5.8 Frames reception (RX)
The frame reception process is something that needs to be activated at the beginning and kept always
running. For this reason the closed Descriptor list (see above) is much more useful than the open list
approach.

Again, with this approach every Descriptor will have the DMA_Next field pointing to the next Descriptor in
the chain (the last one will point to the first one), the NXT_EN bit, the VALID bit and the NPOL_EN bit on.

The CPU starts the transfer activity loading the DMA Next register of the DMA_MAC with the physical
location of the first Descriptor and set the DMA Start register enable bit to on.The DMA_MAC will start
fetching the Descriptors one by one, driven by the frames reception from the line. Every time the
DMA_MAC completes a Descriptor (frame) it saves the transfer status into TxRx_Status, it turns its
VALID bit to off and raises the TX_CURR_DONE interrupt bit.

Eventually, the DMA_MAC will be faster than the CPU, it will wrap around the Descriptor chain and find a
Descriptor still invalid.
Then the DMA_CNT keeps polling the invalid descriptor, raising each time the TX_NEXT interrupt bit (if
enabled), until some Descriptor gets available (note that in this case some frame could be lost). In the
meantime the CPU should consume the frames received and set the VALID bit to on of all the Descriptor
released.
As soon as the DMA_CNT finds the Descriptor valid again, it will be able to complete the transfer and to
fetch the next Descriptor.

6.5.9 Ethernet block Register Map [0x0C680000]
The base address of the Ethernet registers is 0x0C680000
The memory map of the Dual MAC Ethernet block is shown below:

Address Register Name Notes

DMA_MAC1 Eth_base1=0x0C680000

Eth_base1+ 0x0000 DMA_ST&CNTL DMA Status and Control Register

Eth_base1+0004 DMA_INT_EN DMA Interrupt Sources Enable Register

Eth_base1+0008 DMA_INT_STAT DMA Interrupt Status Register

Eth_base1+000C Reserved

Eth_base1+ 0x0010 RX_DMA_START RX DMA start Register

STLC1502

26/81

Eth_base1+ 0x0014 RXD_DMA_CNTL RX Data DMA Control Register

Eth_base1+ 0x0018 RXD_DMA_ADDR RX Data DMA Base Address Register

Eth_base1+ 0x001C RXD_DMA_NXT RX Data DMA Next Descriptor Address
Register

Eth_base1+ 0x0020 RX_DMA_CADDR RX DMA Current Address Register

Eth_base1+ 0x0024 RX_DMA_CXFER RX DMA Current Transfer Count Regis-
ter

Eth_base1+ 0x0028 RX_DMA_TO RX DMA FIFO Time Out Register

Eth_base1+ 0x002C RX_DMA FIFO RX DMA FIFO Status Register

Eth_base1+ 0x0030 RXV_DMA_CNTL RX Voice DMA Control Register

Eth_base1+ 0x0034 RXV_DMA_ADDR RX Voice DMA Base Address Register

Eth_base1+ 0x0038 RXV_DMA_NXT RX Voice DMA Next Descriptor Address
Register

Eth_base1+0x003C-
Eth_base1+0x 004C

Reserved

Eth_base1+ 0x0050 TX_DMA_START TX DMA start Register

Eth_base1+ 0x0054 TXD_DMA_CNTL TX Data DMA Control Register

Eth_base1+ 0x0058 TXD_DMA_ADDR TX Data DMA Base Address Register

Eth_base1+ 0x005C TXD_DMA_NXT TX Data DMA Next Descriptor Address
Register

Eth_base1+ 0x0060 TX_DMA_CADDR TX DMA Current Address Register

Eth_base1+ 0x0064 TX_DMA_CXFER TX DMA Current Transfer Count Regis-
ter

Eth_base1+ 0x0068 TX_DMA_TO TX DMA FIFO Time Out Register

Eth_base1+ 0x006C TX_DMA FIFO TX DMA FIFO Status Register

Eth_base1+ 0x0070 TXV_DMA_CNTL TX Voice DMA Control Register

Eth_base1+ 0x0074 TXV_DMA_ADDR TX Voice DMA Base Address Register

Address Register Name Notes

27/81

STLC1502

Eth_base1+ 0x0078 TXV_DMA_NXT TX Voice DMA Next Descriptor Address
Register

Eth_base1+0x007C-
Eth_base1+ 0x00FC

Reserved

Eth_base1+ 0x0100 RX_FIFO_0 RX FIFO 32 bit word #0

....

Eth_base1+ 0x013C RX_FIFO_15 RX FIFO 32 bit word #15

Eth_base1+ 0x0180-
Eth_base1+ 0x01FC

Reserved

Eth_base1+ 0x0200 TX_FIFO_0 TX FIFO 32 bit word #0

....

Eth_base1+ 0x023C TX_FIFO_15 TX FIFO 32 bit word #15

Eth_base1+ 0x0280-
Eth_base1+ 0x03FF

Reserved

Eth_base+ 0x0400-
Eth_base+ 0x07FF

MAC110

DMA_MAC2 Eth_base2 = 0x0C680800

Eth_base2+ 0x000 DMA_ST&CNTL DMA Status and Control Register

Eth_base2+0x0004 DMA_INT_EN DMA Interrupt Sources Enable Register

Eth_base2+0x8008 DMA_INT_STAT DMA Interrupt Status Register

Eth_base2+0x000C Reserved

Eth_base2+ 0x0010 RX_DMA_START RX DMA start Register

Eth_base2+ 0x0014 RXD_DMA_CNTL RX Data DMA Control Register

Eth_base2+ 0x0018 RXD_DMA_ADDR RX Data DMA Base Address Register

Eth_base2+ 0x001C RXD_DMA_NXT RX Data DMA Next Descriptor Address
Register

Eth_base2+ 0x0020 RX_DMA_CADDR RX DMA Current Address Register

Address Register Name Notes

STLC1502

28/81

Eth_base2+ 0x0024 RX_DMA_CXFER RX DMA Current Transfer Count Regis-
ter

Eth_base2+ 0x0028 RX_DMA_TO RX DMA FIFO Time Out Register

Eth_base2+ 0x002C RX_DMA FIFO RX DMA FIFO Status Register

Eth_base2+ 0x0030 RXV_DMA_CNTL RX Voice DMA Control Register

Eth_base2+ 0x0034 RXV_DMA_ADDR RX Voice DMA Base Address Register

Eth_base2+ 0x0038 RXV_DMA_NXT RX Voice DMA Next Descriptor Address
Register

Eth_base2+0x003C-
Eth_base2+004C

Reserved

Eth_base2+ 0x0050 TX_DMA_START TX DMA start Register

Eth_base2+ 0x0054 TXD_DMA_CNTL TX Data DMA Control Register

Eth_base2+ 0x0058 TXD_DMA_ADDR TX Data DMA Base Address Register

Eth_base2+ 0x005C TXD_DMA_NXT TX Data DMA Next Descriptor Address
Register

Eth_base2+ 0x0060 TX_DMA_CADDR TX DMA Current Address Register

Eth_base2+ 0x0064 TX_DMA_CXFER TX DMA Current Transfer Count Regis-
ter

Eth_base2+ 0x0068 TX_DMA_TO TX DMA FIFO Time Out Register

Eth_base2+ 0x006C TX_DMA FIFO TX DMA FIFO Status Register

Eth_base2+ 0x0070 TXV_DMA_CNTL TX Voice DMA Control Register

Eth_base2+ 0x0074 TXV_DMA_ADDR TX Voice DMA Base Address Register

Eth_base2+ 0x0078 TXV_DMA_NXT TX Voice DMA Next Descriptor Address
Register

Eth_base2+0x007C-
Eth_base2+ 0x00FC

Reserved

Eth_base2+ 0x0100 RX_FIFO_0 RX FIFO 32 bit word #0

....

Address Register Name Notes

29/81

STLC1502

 6.6 Arbiter
The arbiter is used to ensure that, at any point in time, only one master has access to the bus. It performs this
function by observing all of the bus master requests to use the bus, and deciding which is currently the highest
priority. It has a standard interface to all bus masters and split-capable slaves in the system. However it does
not support SPLIT bus transfers.

A bus master may request the bus during any cycle by setting its HBUSREQ output HIGH. This is then sampled
by the arbiter on the rising edge of the clock, and passed through the priority algorithm to decide which master
will have access to the bus during the next cycle. The HGRANT then outputs change to indicate which master
currently is granted control of the bus.

The HLOCK signals may be used to ensure that during an indivisible transfer, the current grant outputs do not
change. HLOCK must be asserted at least one cycle before the locked transfer to prevent the arbiter from
changing the grant signals. When more than one master requests ownership of the system bus, the priority used
for arbitration is:

• Highest: TIC
• Printer Drive Control
• DMA Controller
• Lowest: ARM7TDMI (default master)

The ARM7TDMI will periodically assume top priority on the system bus: this period can be programmed. Also,
it will assume top priority when an interrupt occurs, if the interrupt mode is enabled. During reset, and when no
other masters are requesting control of the bus, the ARM7TDMI is selected as the currently granted master.
This minimizes the delay required for the core to perform a transfer on the bus, as it does not have to wait to be
granted control of the bus before it can start a new transfer.

The system also requires a default master, which is selected when no masters are granted control of the bus,
for example, when all system bus masters are waiting for split transfers to complete. The default master per-
forms IDLE transfers while it is granted control of the bus. The bus grant outputs may change while HREADY
is LOW, but the newly granted master may only drive the bus when the current transfer has completed. This
requires that bus masters only drive the bus after they detect that both their HGRANT and HREADY inputs are
set HIGH.

All registers used in the system are clocked from the rising edge of the system clock HCLK, and use the asyn-
chronous reset HRESETn. The arbiter control and status registers are accessed via the APB bus.

Eth_base2+ 0x013C RX_FIFO_15 RX FIFO 32 bit word #15

Eth_base2+ 0x0180-
Eth_base2+ 0x01FC

Reserved

Eth_base2+ 0x0200 TX_FIFO_0 TX FIFO 32 bit word #0

....

Eth_base2+ 0x023C TX_FIFO_15 TX FIFO 32 bit word #15

Eth_base2+ 0x0280-
Eth_base2+ 0x03FF

Reserved

Eth_base2+ 0x0400-
Eth_base2+ 0x07FF

MAC110 Refer to the InSilicon MAC110 specifica-
tion (see Ref. [2])

Address Register Name Notes

STLC1502

30/81

 6.7 TIC-Test Interface Controller
The Test Interface Controller (TIC) is a state machine that provides an AMBA AHB bus master for system test.
It reads test write and address data from the external data bus TESTBUS (XD), and uses the External Bus In-
terface (part of the DRAM Controller) to drive the external bus with test read data, allowing the use of only one
set of output tristate buffers onto TESTBUS.

The TIC is used to convert externally applied test vectors into internal transfers on the AHB bus. A three-wire
external handshake protocol is used, with two inputs controlling the type of vector that is applied and a single
output that indicates when the next vector can be applied. Typically the TIC is the highest priority AMBA bus
master, which ensures test access under all conditions. The TIC model supports address incrementing and con-
trol vectors. This means that the address for burst transfers can automatically be generated by the TIC.

 6.8 AHB-ASB bridge
The APB bridge is the only bus master on the Advanced Peripheral Bus. In fact, the APB bridge is also a slave
on the AHB. The bridge unit converts ASB transfers into APB transfers. On the APB bus only 16 bits wide data
accesses are permitted. 32 bit wide and 8 bit wide transfers are not supported. All the APB peripherals decodes
all the 16 bits of the PA bus.

APB decoding scheme

Every area is 128k x 16 bits but the area actually available is 32k x 16 due to the fact that the address lines on
the APB bus are 16 (PA(15:0)). That means that in every area dedicated to the several block on the APB bus
only the first FFFF is usable.

 7.0 APB bus
The APB bus is a 16 bits data and 16 bits address bus. The blocks attached on this bus are described in the
following sections while the memory area is reported in the following figure.

All the addresses in the APB space are word aligned (addresses are multiples of four)

APB decoder space PA(15:0)

31/81

STLC1502

Figure 8: APB Memory Map

SPI port

Reserved

Interrupt Controller

Dual Port SRAM

Ethernet Mac DMACs

0C000000

0C07FFFF

0C6FFFFF

0C4FFFFF

0C100000

0C17FFFF

0C080000

0COFFFFF

0C180000

0C1FFFFF

0C200000

0C27FFFF

0C3FFFFF

0C280000

0C400000

0C47FFFF

0C480000

I2C port
0C300000

EDM regs

GPIO

ESM regs
0C600000

0C5FFFFF

0C580000

0C500000
Watchdog Timer

0C67FFFF

0C680000

0C800000

UART

HPI

0C2FFFFF

0C37FFFF
0C380000

Timer

Miscellaneous I/O

DMAC

0C57FFFF

0C8FFFFF

0C700000
0C7FFFFF

ARM/D950 bridge

STLC1502

32/81

 7.1 Timer
The Timer module connects to the Advanced Peripheral Bus.

Figure 9: Timer block diagram

This implementation consists of two major sections comprising:
• All the control logic
• Two instantiations of the free-running counters (FRCs)

The timer module has a series of memory-mapped locations that allow the state of the timer module to be read
from and written to via the APB.

 7.1.1 Timer introduction
Two timers are defined and can be selected by the Control register:
• Free-running mode:The timer wraps after reaching its zero value, and continues to count down from

the maximum value.
• Periodic timer mode:The counter generates an interrupt at a constant interval.

 7.1.2 Timer operation
The timer is loaded by writing to the load register and, if enabled, counts down to zero. When zero is reached,
an interrupt is generated. The interrupt may be cleared by writing to the Clear register.

After reaching a zero count, if the timer is operating in free-running mode it continues to decrement from its max-
imum value. If periodic timer mode is selected, the timer reloads from the load register and continues to decre-
ment. In this mode the timer effectively generates a periodic interrupt. The mode is selected by a bit in the
Control register.

At any point, the current timer value may be read from the Value register.

The timer is enabled by a bit in the control register. At reset, the timer is disabled, the interrupt is cleared and
the Load register is undefined. The mode and prescale values are also undefined.

CKTIMER

PWDATA [15:0]

PA[15:0]

PWRITE

PENABLE

BnRES

DSEL_TIMER

INTCT1

INTCT2

Prescaler

Load Registers

Control Registers

Control Logic

Control Section

FRC - Free Running
counter

FRC - Free Running
counter

Timer Section

PRDATA [15:0]

INTCT3

INTCT4

To PIC

To EDM

33/81

STLC1502

Figure 10: Timer block diagram

The timer clock is generated by a prescale unit. The timer clock may be one of:
• The CKTIMER
• The CKTIMER divided by 16, generated by 4 bits of prescale
• the CKTIMER divided by 256, generated by a total of 8 bits of prescale

Figure 11: Pre-scaler block diagram

Using the recommended 2.208Mhz clock, the minimum interval between two timer interrupt is 452nsec (corre-
sponding to the 2.208Mhz period) while the maximum interval between two timer interrupt is around 6sec.

 7.1.3 Timer register map [0x0C000000]
The base address of the timer register is 0x0C000000

Terminal Count
Interrupt

Value

Load Control

Timer
Clock

16-bit Down Counter

Load Register Control Register

Divide
by 16

CKTIMER

Prescale
Select

Divide
by 16

Timer
Clock

STLC1502

34/81

The offset of any particular register from the base address is the following.

Address Register Name R/W Notes

TimerBase + 0x00 Timer1Load R/W Timer1Load. The Load register
contains the initial value of the timer
and is also used as the reload
value in periodic timer mode.

TimerBase + 0x04 Timer1Value R Timer1Value. The Value location
gives the current value of the timer.

TimerBase + 0x08 Timer1Control R/W Timer1Control. The Control regis-
ter provides enable/disable, mode
and prescale configurations for the
timer (see Figure 10).

TimerBase + 0x0C Timer1Clear W Timer1Clear. Writing to the Clear
location clears an interrupt gener-
ated by the counter timer.

TimerBase + 0x10 Timer2Load R/W Timer2Load. The Load register
contains the initial value of the timer
and is also used as the reload
value in periodic timer mode.

TimerBase + 0x14 Timer2Value R Timer2Value. The Value location
gives the current value of the timer.

TimerBase + 0x18 Timer2Control R/W Timer2Control. The Control regis-
ter provides enable/disable, mode
and prescale configurations for the
timer (see Figure 10).

TimerBase + 0x1C Timer2Clear W Timer2Clear. Writing to the Clear
location clears an interrupt gener-
ated by the counter timer.

TimerBase + 0x20 Timer3Load R/W Timer3Load. The Load register
contains the initial value of the timer
and is also used as the reload
value in periodic timer mode.

TimerBase + 0x24 Timer3Value R Timer3Value. The Value location
gives the current value of the timer.

35/81

STLC1502

 7.2 Watchdog Timer
STLC1502 contains a Watchdog timer. This timer is used to reset the ARM7 in case of a software deadlock.
The watchdog timer generates a hot reset when it overflows which will restart the ARM, but the code will
not be downloaded again. The timer should be cleared by the software before it overflows.

It is based on a 8 bit counter which is clocked by a slow signal coming from a 17 bit prescaler clocked by
the system clock.
So the elapsing time of the watchdog timer depend on the system clock:
SYS_CLK:
13MHz => 2.58 seconds
26MHz => 1.29 seconds
39MHz => 0.86 seconds
52MHz => 0.64 seconds

This peripheral consists of a timer that continue to run and to reset the core if the software doesn’ t clear
it before it elapses. The software can clear or disable the timer by writing the WDOG_CONTROL register

7.2.1 Watch Dog Register Map [0x0C500000]

TimerBase + 0x28 Timer3Control R/W Timer3Control. The Control regis-
ter provides enable/disable, mode
and prescale configurations for the
timer (see Figure 10).

TimerBase + 0x0C Timer3Clear W Timer3Clear. Writing to the Clear
location clears an interrupt gener-
ated by the counter timer.

TimerBase + 0x30 Timer4Load R/W Timer4Load. The Load register
contains the initial value of the timer
and is also used as the reload
value in periodic timer mode.

TimerBase + 0x34 Timer4Value R Timer4Value. The Value location
gives the current value of the timer.

TimerBase + 0x38 Timer4Control R/W Timer4Control. The Control regis-
ter provides enable/disable, mode
and prescale configurations for the
timer (see Figure 10).

TimerBase + 0x3C Timer4Clear W Timer4Clear. Writing to the Clear
location clears an interrupt gener-
ated by the counter timer.

Address Register Name R/W Notes

STLC1502

36/81

The base address of the WDT register is 0x0C500000
The memory map of the WDT peripheral is shown below:

 7.3 Miscellaneous I/O
All the registers not related to any module attached to the APB/AHB bus such as EII, Test are considered Mis-
cellaneous I/O. Additionally, the ESM configuration register and the Dual Port register are also part of this block.

 7.3.1 Miscellaneous Register Map [0x0C080000]
The Miscellaneous register address is 0x0C080000

 7.4 Interrupt Controller
In an ARM system, two levels of interrupt are available:
• FIQ (Fast Interrupt Request) for fast, low latency interrupt handling
• IRQ (Interrupt Request) for more general interrupts

Ideally, in an ARM system, only a single FIQ source would be in use at any particular time. This provides a true
low-latency interrupt, because a single source ensures that the interrupt service routine may be executed direct-
ly without the need to determine the source of the interrupt. It also reduces the interrupt latency because the
extra banked registers, which are available for FIQ interrupts, may be used to maximum efficiency by preventing
the need for a context save.

Separate interrupt controllers are used for FIQ and IRQ.

There are 15 interrupt causes available in the IRQ controller coming from:
• Software (internally generated)
• Timer1

Address Register Name R/W Notes

ESMBase + 0x00 WDTControl R/W WDT control register

ESMBase + 0x04 WDT reset_stat R/W WDT reset the status register

ESMBase + 0x08 WDT max_count R/W WDT programmable max count

ESMBase + 0x0C WDT counter R WDT internal counter value

Address Register Name R/W Notes

MISC_regBase+ 0x00 Control W This register allows to control the
reset/boot procedure and some
other control features

MISC_regBase+ 0x10 Status W This register allows DSP section
setting

MISC_regBase+ 0x20 IDENTIFICATION R This register provides informa-
tions about the device/system

37/81

STLC1502

• Timer2
• UART
• Dual Port RAM
• I2C
• Ethernet switch DMAC1
• Ethernet switch DMAC2
• SPI
• DMAC
• IRQ1/GPIO18
• IRQ2/GPIO19
• IKybd
• HPI
• Timer3

Even if only a single bit position is defined for FIQ, the interrupt controller can drive one of the interrupt source
(IRQ interrupt sources), through a register, in order to generate the FIQ interrupt.

The IRQ interrupt controller uses a bit position for each different interrupt source.

All interrupt source inputs must be active HIGH and level sensitive and it remain active until the interrupt cause
has been cancelled.

No hardware priority scheme nor any form of interrupt vectoring is provided, because these functions can be
provided in software.

A programmed interrupt register is also provided to generate an interrupt under software control.

Every interrupt source can be masked.

 7.4.1 Interrupt control
The IRQ interrupt management is done as described in the following:
• An interrupt is generated by a given device/source;
• This cause is readable by the IRQRawStatus register;
• If not masked (the mask is set by IRQEnableSet and reset by IRQEnableClear), this interrupt will

generate a IRQ signal to the ARM and the interrupt source will be known by a read of the IRQStatus
register.

• The ARM will serve the IRQ reading at first in the IRQStatus the active interrupt requests and will
execute with a given priority the proper interrupt routine. Every routine must erase (quite soon) in
some way its interrupt request source. This causes also for the proper bit in the IRQRawStatus regis-
ter and in the IRQStatus register to disappear.

The same interlock is present for the FIQ interrupt.

 7.4.2 Interrupt control scheme

STLC1502

38/81

Figure 11: Interrupt block scheme

BCLK

PWRITE

PENABLE

BnRES

DSEL_INT

NFIQ

NIRQ

IRQSource[13:0]

FIQ
Control

IRQ
Control

NFIQ

NIRQ

PWDATA [15:0]

PA[15:0]

PRDATA [15:0]

39/81

STLC1502

Figure 12: IRQ control block

 7.4.3 Interrupt register map [0x0C100000]
The base address of the timer register is 0x0C100000

The offset of any particular register from the base address is the following.

Address Register Name R/W Notes

Int.Base + 0x00 IRQStatus R For every IRQ interrupt cause,
a ‘1’ means an active pending
interrupt that has to be served
by the ARM

Int Base+ 0x04 IRQRawStatus R For every IRQ interrupt source,
a ‘1’ means an active pending
interrupt “before” the mask (w/
o considering the mask)

Int.Base + 0x08 IRQEnableSet R/W For every IRQ interrupt source,
a ‘0’ means that even if an
interrupt source is active, it has
to be stopped (masked). The
write operation of 1 to a given
bit, enable the corresponding
interrupt

INTERRUPT_MASK

Enable

nIRQ

Other Interrupt Bit Slices

IRQRawStatus
IRQStatus

Interrupt Source Interrupt Pending

STLC1502

40/81

Int.Base + 0x0C IRQSoft R/W Only the bit 1 has to be used.
Writing ‘1’ it generates an inter-
rupt mapped in the bit 1 of the
IRQStatus and of the IRQRaw-
Status registers. Writing ‘0’ the
software interrupt cause is
erased.

Int.Base + 0x10 FIQStatus R For the FIQ interrupt cause, ‘1’
means an active pending inter-
rupt that has to be served by
the ARM.

Int Base + 0x14 FIQRawStatus R For the IRQ interrupt source, a
‘1’ means an active pending
interrupt “before” the mask (w/
o considering the mask)

Int.Base + 0x18 FIQEnableSet R/W For the FIQ interrupt source, a
‘0’ means that even if an inter-
rupt source is active, it has to
be stopped (masked). The
write operation of 1 to the bit0,
enables the interrupt

Int.Base + 0x1C IRQEnableClear W The write operation of 1 to a
given bit, disables the corre-
sponding interrupt. As conse-
quence, the corresponding bit
in the IRQEnableSet goes to 0
(interrupt disabled).

Int.Base + 0x20 FIQEnableClear W The write operation of 1 into
the bit 0 disables FIQ interrupt
cause. As a result, the bit 0 in
the FIQEnableSet goes to 0
(interrupt disabled).

Int.Base + 0x24 IRQTestSource R/W Usable when the bit 0 of the
IRQSourceSel is set to one. In
this case this register is the
interrupt source cause. If set,
the cause is active (interrupt
generated) while if reset, the
cause is not active.

Address Register Name R/W Notes

41/81

STLC1502

 7.5 SPI-Serial Peripheral Interface
The Serial Peripheral Interface (SPI) allows full-duplex, synchronous, serial communication with external
devices. An SPI system may consist of a master and one or more slaves or a system in which devices
may be either masters or slaves.
The SPI is normally used for communication between the microcontroller and external peripherals.

7.5.1 Main Features
• Full duplex, three-wire synchronous transfers
• Master mode operation (clock generation)
• Four master mode frequencies
• Four programmable master bit rates
• Programmable clock polarity and phase
• End of transfer interrupt flag
• Write collision flag protection
• Master mode fault protection capability.
The SPI is connected to external devices through 3 pins:
SMI: Master In
SMO: Master Out
SCK: Serial Clock pin

Int Base + 0x28 IRQSourceSel R/W Select the test mode of the IRQ
cause on the interrupt control-
ler (if the bit 0 is set). In this
case the IRQTestSource
becomes the interrupt source
cause.

Int.Base + 0x2C FIQTestSource R/W Usable when the bit 0 of the
FIQSourceSel is set to one. In
this case this register is the
interrupt source cause. If set,
the cause is active (interrupt
generated) while if reset, the
cause is not active.

Int Base + 0x30 FIQSourceSel R/W Select the test mode of the FIQ
cause on the interrupt control-
ler (if the bit 0 is set). In this
case the FIQTestSource
becomes the interrupt source
cause. Moreover this register
contains also the selection for
the FIQ interrupt cause.

Address Register Name R/W Notes

STLC1502

42/81

When the master device transmits data to a slave device via SMO pin, the slave device responds by send-
ing data to the master device to the SMI. This implies full duplex transmission with both data out and data
in synchronized with the same clock signal (which is provided by the master device via the SCK pin).
Thus, the byte transmitted is replaced by the byte received and eliminates the need for separate transmit-
empty and receiver-full bits. A status flag is used to indicate that the I/O operation is complete.
The MSB is transmitted first.
Four possible data/clock timing relationships may be chosen.

7.5.2 Programming procedure

The SPI interface contains 3 dedicated registers:
• A Control Register (CR)
• A Status Register (SR)
• A Data Register (DR)
Check the register description section for bits position and functions.
Select the SPR0 & SPR1 bits to define the serial clock baud rate.
Select the CPOL and CPHA bits to define one of the four relationships between the data transfer and the
serial clock.
The transmit sequence begins when a byte is written in the DR register. The data byte is parallely loaded
into the 8-bit shift register (from the internal bus) during a write cycle and then shifted out serially to the
SMO pin most significant bit first. When data transfer is complete:
The SPIF bit is set by hardware
.An interrupt is generated if the SPIE bit is set and the I bit in the CCR register is cleared.
During the last clock cycle the SPIF bit is set, a copy of the data byte received in the shift register
is moved to a buffer. When the DR register is read, the SPI peripheral returns this buffered value.
Clearing the SPIF bit is performed by the following software sequence:
1. An access to the SR register while the SPIF bit is set
2. A read to the DR register.
Note: While the SPIF bit is set, all writes to the DR register are inhibited until the SR register is read.

7.5.3 Data Transfer Format

During an SPI transfer, data is simultaneously transmitted (shifted out serially) and received (shifted in se-
rially). The serial clock is used to synchronize the data transfer during a sequence of eight clock pulses.
Four possible timing relationships may be chosen by software, using the CPOL and CPHA bits.
The CPOL (clock polarity) bit controls the steady state value of the clock when no data is being transferred.
The combination between the CPOL and CPHA (clock phase) bits selects the data capture clock edge.
The master device applies data to its SMO pin before the capture clock edge.

CPHA bit is set:
The second edge on the SCK pin (falling edge if the CPOL bit is reset, rising edge if the CPOL bit is set)
is the MSBit capture strobe. Data is latched on the occurrence of the second clock transition.

CPHA bit is reset
The first edge on the SCK pin (falling edge if CPOL bit is set, rising edge if CPOL bit is reset) is the MSBit
capture strobe. Data is latched on the occurrence of the first clock transition.
The slave select signal is necessary in case more than one slave devices are connected on the seral bus.
The slave select can be generated with a GPIO pin.

43/81

STLC1502

7.5.4 Collision management

Collision is defined as a write of the DR register while the internal serial clock (SCK) is in the process of
transfer. The WCOL bit in the SR register is set if a write collision occurs. No SPI interrupt is generated
when the WCOL bit is set (the WCOL bit is a status flag only). Clearing the WCOL bit is done through a
software sequence:
1-Read SR
2-Read DR

7.5.5 SPI register map [0x0C280000]
The base address of the Remap & Pause register is 0x0C280000.

STLC1502

44/81

The offset of any particular register from the base address is the following.

7.6 I2C bus interface

The I2C Bus Interface serves as an interface between the microcontroller and the serial I2C bus. It pro-
vides both multimaster and slave functions, and controls all I2C bus-specific sequencing, protocol, arbi-
tration and timing. It supports fast I2C mode (400kHz).

7.6.1 Main Features
• Parallel-bus/I2C protocol converter
• Multi-master capability
• 7-bit/10-bit Addressing
• Transmitter/Receiver flag
• End-of-byte transmission flag
• Transfer problem detection

I2C Master Features:
• Clock generation
• I2C bus busy flag
• Arbitration Lost Flag
• End of byte transmission flag
• Transmitter/Receiver Flag
• Start bit detection flag
• Start and Stop generation

I2C Slave Features:
• Stop bit detection
• I2C bus busy flag
• Detection of misplaced start or stop condition
• Programmable I2C Address detection
• Transfer problem detection
• End-of-byte transmission flag
• Transmitter/Receiver flag

7.6.2 General Description

In addition to receiving and transmitting data, this interface converts it from serial to parallel format and
vice versa, using either an interrupt or polled by software. The interface is connected to the I2C bus by a
data pin (SDAI) and by a clock pin (SCLI). It can be connected both with a standard I2C bus and a Fast
I2C bus. This selection is made by software.
The interface can operate in the following modes:
– Slave transmitter/receiver
– Master transmitter/receiver

Address Register Name R/W Notes

SPI_regBase+ 0x04 SPIDR R/W SPI Data I/O register.

SPI_regBase+ 0x08 SPICR R/W SPI configuration register

SPI_regBase+ 0x0C SPISR R/W SPI status register

45/81

STLC1502

By default, it operates in slave mode. The interface automatically switches from slave to master after it
generates a START condition and from master to slave in case of arbitration loss or a STOP generation,
allowing then Multi-Master capability.
In Master mode, it initiates a data transfer and generates the clock signal. A serial data transfer always
begins with a start condition and ends with a stop condition. Both start and stop conditions are generated
in master mode by software.
In Slave mode, the interface is capable of recognizing its own address (7 or 10 bits), and the General Call
address. The General Call address detection may be enabled or disabled by software.
Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the start condition
contain the address (one in 7-bit mode, two in 10-bit mode). The address is always transmitted in Master
mode. A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must send

 an acknowledge bit to the transmitter.

• Acknowledge may be enabled and disabled by software. The I 2 C interface address and/or general

call address can be selected by software. The speed of the I 2 C interface may be selected between
Standard (0-100KHz) and Fast I2C (100-400KHz).

• In transmitter mode the interface holds the clock in low before transmission to wait for the microcon-
troller to write the byte in the Data Register.

• In receiver mode: the interface holds the clock line low after reception to wait for the microcontroller
to read the byte in the Data Register.

• The SCL frequency (Fscl) is controlled by a programmable clock divider which depends on the I 2 C
bus mode.

• When the I2C cell is enabled, the SDA and SCL ports must be configured as floating inputs. In this
case, the value of the external pull-up resistor used depends on the application.

7.6.3 Functional Description
Refer to the CR, SR1 and SR2 registers in register map section for the bit definitions.
By default the I 2 C interface operates in Slave mode (M/SL bit is cleared) except when it initiates a trans-
mit or receive sequence. First the interface frequency must be configured using the FRi bits in the OAR2
register.

7.6.3.1 Slave mode
As soon as a start condition is detected, the address is received from the SDA line and sent to the shift
register; then it is compared with the address of the interface or the General Call address (if selected by

STLC1502

46/81

software).
Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0) and the two
most significant bits of the address.

• Header matched (10-bit mode only): the interface generates an acknowledge pulse if the ACK bit
is set.

• Address not matched: the interface ignores it and waits for another Start condition.
• Address matched: the interface generates in sequence:

• Acknowledge pulse if the ACK bit is set.
• EVFand ADSL bits are set with an interrupt if the ITE bit is set.

Then the interface waits for a read of the SR1 register, holding the SCL line low. Next, read the DR register to
determine from the least significant bit (Data Direction Bit) if the slave must enter Receiver or Transmitter mode.

In 10-bit mode, after receiving the address sequence the slave is always in receive mode. It will enter transmit
mode on receiving a repeated Start condition followed by the header sequence with matching address bits and
the least significant bit set (11110xx1).

Slave Receiver
After the address reception and SR1 register has been read, the slave receives bytes from the SDA line
into the DR register via the internal shift register. After each byte the interface generates in sequence:
– Acknowledge pulse if the ACK bit is set
– EVF and BTF bits are set with an interrupt if the ITE bit is set.
Then the interface waits for a read of the SR1 register followed by a read of the DR register, holding the
SCL line low.

Slave Transmitter
After the address reception and the SR1 register has been read, the slave sends bytes from the DR reg-
ister to the SDA line via the internal shift register. The slave waits for a read of the SR1 register followed
by a write in the DR register, holding the SCL line low.
When the acknowledge pulse is received:
– The EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.

Closing slave communication
After the last data byte is transferred a Stop Condition is generated by the master. The interface detects
this condition and sets:
– EVF and STOPF bits with an interrupt if the ITE bit is set.Then the interface waits for a read of the SR2
register
Error Cases
– BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the EVF and the
BERR bits are set with an interrupt if the ITE bit is set. If it is a Stop then the interface discards the data,
released the lines and waits for another Start condition. If it is a Start then the interface discards the data
and waits for the next slave address on the bus.
– AF: Detection of a non-acknowledge bit. In this case, the EVF and AF bits are set with an interrupt if the
ITE bit is set.
Note: In both cases, SCL line is not held low; however, SDA line can remain low due to possible «0» bits
transmitted last. It is then necessary to release both lines by software.
How to release the SDA / SCL lines:
• Set and subsequently clear the STOP bit while BTF is set.

47/81

STLC1502

• The SDA/SCL lines are released after the transfer of the current byte.

7.6.3.2 Master Mode
To switch from default Slave mode to Master mode a Start condition generation is needed.
Start condition
Setting the START bit while the BUSY bit is cleared causes the interface to switch to Master mode (M/SL
bit set) and generates a Start condition. Once the Start condition is sent:
– The EVF and SB bits are set by hardware with an interrupt if the ITE bit is set.
Then the master waits for a read of the SR1 register followed by a write in the DR register with the Slave
address, holding the SCL line low.

Slave address transmission
The slave address is then sent to the SDA line via the internal shift register.
In 7-bit addressing mode, one address byte is sent.
In 10-bit addressing mode, sending the first byte including the header sequence causes the following
event:
– The EVF bit is set by hardware with interrupt generation if the ITE bit is set.
Then the master waits for a read of the SR1 register followed by a write in the DR register, holding the
SCL line low. The second address byte is then sent by the interface. After completion of this transfer (and
acknowledge from the slave if the ACK bit is set):
– The EVF bit is set by hardware with interrupt generation if the ITE bit is set.
Then the master waits for a read of the SR1 register followed by a write in the CR register (for example
set PE bit), holding the SCL line low. Next the master must enter Receiver or Transmitter mode.
Note: In 10-bit addressing mode, to switch the master to Receiver mode, software must generate a
repeated Start condition and resend the header sequence with the least significant bit set (11110xx1).

Master Receiver
After the address transmission and SR1 and CR registers have been accessed, the master receives
bytes from the SDA line into the DR register via the internal shift register. After each byte the interface
generates in sequence:
– Acknowledge pulse if the ACK bit is set
– EVFand BTF bits are set by hardware with an interrupt if the ITE bit is set.
Then the interface waits for a read of the SR1 register followed by a read of the DR register, holding the
SCL line low. To close the communication: before reading the last byte from the DR register, set the
STOP bit to generate the Stop condition. The interface goes automatically back to slave mode (M/SL bit
cleared).
Note: In order to generate the non-acknowledge pulse after the last received data byte, the ACK bit must
be cleared just before reading the second last data byte.

Master Transmitter
After the address transmission and SR1 register has been read, the master sends bytes from the DR
register to the SDA line via the internal shift register. The master waits for a read of the SR1 register fol-
lowed by a write in the DR register, holding the SCL line low. When the acknowledge bit is received, the
interface sets:
– EVF and BTF bits with an interrupt if the ITE bit is set.
To close the communication: after writing the last byte to the DR register, set the STOP bit to generate
the Stop condition. The interface goes automatically back to slave mode (M/SL bit cleared).

STLC1502

48/81

Error Cases
• BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the EVF and

BERR bits are set by hardware with an interrupt if ITE is set.
• AF: Detection of a non-acknowledge bit. In this case, the EVF and AF bits are set by hardware with

an interrupt if the ITE bit is set. To resume, set the START or STOP bit.
• ARLO: Detection of an arbitration lost condition. In this case the ARLO bit is set by hardware (with an

interrupt if the ITE bit is set and the interface goes automatically back to slave mode (the M/SL bit is
cleared).

Note: In all these cases, the SCL line is not held low; however, the SDA line can remain low due to possi-
ble «0» bits transmitted last. It is then necessary to release both lines by software.

 Event Flags and interrupt generation diagram

 7.6.4 I2C registers map [0X0C300000]
The base address of the Remap & Pause register is 0x0C300000.
The offset of any particular register from the base address is the following.

Address Register
Name

R/W Notes

I2C_regBase+ 0x20 I2CCR R/W I2C configuration register

I2C_regBase+ 0x24 I2CSR1 R/W I2C status register 1

I2C_regBase+ 0x28 I2CSR2 R/W I2C status register 2.

49/81

STLC1502

 7.7 UART-Universal Asynchronous Receiver Transmitter
The UART provides a serial data communication with transmit and receive channels that can operate
concurrently to handle a full-duplex operation. Two internal FIFOs for transmitted and received data,
deep 16 and wide 8 bits, are present; these FIFOs can be enabled or disabled through a register. Inter-
rupts are provided to control reception and transmission of serial data.
The clock for both transmit and receive channels is provided by an internal baud rate generator that
divides its input clock by any divisor value from 1 to 2 16 - 1.

7.7.1 Operation
The UART supports full-duplex asynchronous communication, where both the transmitter and the
receiver use the same data frame format and the same baud rate. Data is transmitted on the TXD pin and
received on the RXD pin.
Data frames
8-bit data frames either consist of:
• eight data bits D0-7 (by setting the Mode bit field to 001);
• seven data bits D0-6 plus an automatically generated parity bit (by setting the Mode bit field to 011).

Parity may be odd or even, depending on the ParityOdd bit in the ASCControl register. An even parity bit
will be set, if the modulo-2-sum of the seven data bits is 1. An odd parity bit will be cleared in this case.
The parity error flag (ParityError) will be set if a wrong parity bit is received. The parity bit itself will be
stored in bit 7 of the ASCRx-Buffer register.

8-bit data frame

9-bit data frames either consist of:
• nine data bits D0-8 (by setting the Mode bit field to 100)
• eight data bits D0-7 plus an automatically generated parity bit (by setting the Mode bit field to 111)
• eight data bits D0-7 plus a wake-up bit (by setting the Mode bit field to 101)

I2C_regBase+ 0x2C I2CCCR R/W I2C Clock Control register.

I2C_regBase+ 0x30 I2COAR1 R/W I2C Own Address register

I2C_regBase+ 0x34 I2COAR2 R/W I2C Own Address register

I2C_regBase+ 0x38 I2CDR R/W I2C Data I/O register.

Address Register
Name

R/W Notes

Start
bit

D0 D1 D2 D3 D4 D5 D6
1st

bit stop
bit

8th

bit
stop
2nd

-Data bit (D7)
-Parity bit

(LSB)

STLC1502

50/81

Parity may be odd or even, depending on the ParityOdd bit in the ASCControl register. An even parity bit
will be set, if the modulo-2-sum of the eight data bits is 1. An odd parity bit will be cleared in this case.
The parity error flag (ParityError) will be set if a wrong parity bit is received. The parity bit itself will be
stored in bit 8 of the ASCRx-Buffer register.

In wake-up mode, received frames are only transferred to the receive buffer register if the ninth bit (the
wake-up bit) is 1. If this bit is 0, no receive interrupt request will be activated and no data will be trans-
ferred. This feature may be used to control communication in multi-processor systems. When the master
processor wants to transmit a block of data to one of several slaves, it first sends out an address byte
which identifies the target slave. An address byte differs from a data byte in that the additional ninth bit is
a 1 for an address byte and a 0 for a data byte, so no slave will be interrupted by a data byte. An address
byte will interrupt all slaves (operating in 8-bit data + wake-up bit mode), so each slave can examine the
8 least significant bits (LSBs) of the received character (the address). The addressed slave will switch to
9-bit data mode, which enables it to receive the data bytes that will be coming (with the wake-up bit
cleared). The slaves that are not being addressed remain in 8-bit data + wake-up bit mode, ignoring the
following data bytes.

 9-bit data frame

7.7.2 Baud rate generation
The UART has its own dedicated 16-bit baud rate generator with 16-bit reload capability.
The baud rate generator is clocked with the CPU clock. The timer counts downwards and can be started
or stopped by the Run bit in the ASCControl register. Each under-flow of the timer provides one clock
pulse. The timer is reloaded with the value stored in its 16-bit reload register each time it underflows. The
ASCBaudRate register is the dual-function baud rate generator/reload register. A read from this register
returns the content of the timer; writing to it updates the reload register. An auto-reload of the timer with
the content of the reload register is performed each time the ASCBaudRate register is written to. How-
ever, if the Run bit is 0 at the time the write operation to the ASCBaudRate register is performed, the
timer will not be reloaded until the first CPU clock cycle after the Run bit is 1.

The baud rate generator provides a clock at 16 times the baud rate. The baud rate and the required
reload value for a given baud rate can be determined by the following formula:
Baudrate = fCPU/(16 *ASCBaudRate)

7.7.3 The timeout interrupt
A timeout counter register provides timeout interrupt on the receive path.
Whenever the rxfifo has got something in it, the timeout counter will decrement until something happens

Start
bit

D0
D1 D2 D3 D4 D5 D6

1st
bit stop

bit

9th

bit
stop
2nd

- Data bit (D7)
- Parity bit

D7(LSB)

- Wake up bit

51/81

STLC1502

to the rxfifo. If nothing happens, and the timeout counter reaches zero, the ASCStatus(Timeout-
NotEmpty) flag will be set. Provided ASCIntEnable(TimeoutNotEmpty) is set, this will cause an interrupt.
When the software has emptied the rxfifo, the timeout counter will reset and start decrementing. If no
more characters arrive, when the counter reaches zero the ASCStatus(TimeoutIdle) flag will be set. Pro-
vided the ASCIntEnable(TimeoutIdle) is set, per_interrupt will fire.

7.7.4 Interrupt control
The UART contains two registers that are used to control interrupts, the status register (ASCStatus) and
the interrupt enable register (ASCIntEnable). The status bits in the ASCStatus register determine the
cause of the interrupt. Interrupts will occur when a status bit is 1 (high) and the corresponding bit in the
ASCIntEnable register is 1.

The error interrupt signal is generated by the UART from the OR of the parity error, framing error, and
overrun error status bits after they have been ANDed with the corresponding enable bits in the ASCIn-
tEnable register. An overall interrupt request signal (per_interrupt) is generated from the OR of the Error
Interrupt signal and the TxEmpty, TxHalfEmpty, RxHalfFull, RxBufFull signals.
Note: TxFull does not generate interrupt.

The status register cannot be written directly by software. The reset mechanism for the status register is
described below.
• TxEmpty, TxHalfEmpty are reset when a character is written to the transmitter buffer.
• TxFull is reset when a character is transmitted
• RxBufFull and OverrunError are reset when a character is read from the receive Fifo.
• The data error status bits (ParityError, FrameError) are reset when the character with error is read

from the receive Fifo.

7.7.5 UART Memory map
The base address of the UART interface is fixed by the APB bridge.

Address Register Name R/W Notes

UART_regBase+ 0x00 ASCBaudRate R/W Baud rate generator register

UART_regBase+ 0x04 ASCTxBuffer WO Transmit buffer (Fifo)

UART_regBase+ 0x08 ASCRxBuffer RO Receive buffer (Fifo).

UART_regBase+ 0x0C ASCControl R/W UART control register.

UART_regBase+ 0x10 ASCIntEnable R/W UART interrupt enable reg-
ister

UART_regBase+ 0x14 ASCStatus RO UART status register.

UART_regBase+ 0x18 ASCGuardtime R/W UART Guartime register.

UART_regBase+ 0x1C ASCTimeout R/W UART Timeout register.

STLC1502

52/81

7.8 GPIO/Keypad encoder
The GPIO block is available as a cell that controls 20 input/output pins. The block includes a key scanning
encoder. The encoder function is an alternative to the use of 12 I/O pins. The 12 pins are organized as a
6X6 matrix providing an interface to a 36 key keyboard. 16 pins are also multiplexed with the HPI external
interface. The HPI interface is selected by external pin HPISEL. Two pins GPIO18, GPIO19 are direct in-
terrupt sources in the interrupt register when programmed as inputs.
The pin description of the GPIO pins can be found in the Pin Description Table in Section 4.1.

7.8.1 GPIO operation mode
The GPIO operation mode is the Parallel Port mode.
Each of the 20 signals may be programmed as an input or an output through a set up register. Once pro-
grammed, each pin maintains its identity as an input or output. Voltages are standard process port levels,
0 and 3.3 volts. The on chip ARM processor may read or write to the port at any time.

7.8.2 Keyboard operation mode
The keyboard may contain up to 36 keys. Twelve (12) port pins provide a 6x6 scanning matrix. Six of the
pins are strobes and six of the pins are inputs. The application circuitry will provide small series resistors
to prevent electrostatic damage to the port pins.

The circuitry will scan the keys at a rate of 10, 20, 40 or 80 msecs, controlled by the software. Two suc-
cessive cycles are needed to validate a key. Only one key will be allowed down in a scan cycle. Once
validated as being down, the "no key down" condition must be validated for two complete cycles when the
key is released. Every valid key condition will cause the value of the key to be written to a register and
an interrupt shall be set. Two key rollover will not be supported unless the solution is easier to implement
than the method described above.

7.8.4 GPIO registers map [0x0C400000]

The base address of GPIO registers is 0x0C400000.
The offset of any particular register from the base address is the following.

UART_regBase+ 0x20 ASCTxReset WO Flush Transmit buffer (Fifo)

UART_regBase+ 0x24 ASCRxReset WO Flush Receive buffer (Fifo)

Address Register
Name

R/W Notes

GPIO_regBase+ 0x00 Control R/W This register allows to set the
block functionality

GPIO_regBase+ 0x04 Mask W This register allows GPIO direc-
tion setting (output enable)

Address Register Name R/W Notes

53/81

STLC1502

 7.9 HPI
The HPI is dual port SRAM based, with control that generates an interrupt when a message is sent. The DPRAM
is implemented on chip and has a message buffer size of 256 bytes for each direction. Input buffer is used for
messages from Host Processor to Stradivarius. Output buffer is used for messages from Stradivarius to Host
Processor.
• The external bus interface of the HPI is compatible with Motorola MPC850 network processor. The

data bus width is 8 bits.
• A status register, an index register (for the host processor), an interrupt mask register, and a mes-

sage buffer are required for both input and output transactions.
• The Input Status Register (ISR) is set by the Host Processor by writing 0x01 and cleared by writing

0x00 to the location. It is cleared by ARM by writing anything to it.
• The Output Status Registers (OSR) is set by the ARM by writing 0x01 and cleared by writing 0x00. It

is cleared by the Host Processor by writing anything to it.
• The Input and Output Index Registers (IIR & OIR respectively) are reset to their starting value by writ-

ing 0x00 to their respective addresses. They can also be cleared by the Host Processor by writing
anything to them.

• The Input Interrupt Mask Register (IIM) resets to 0x00, causing the Mask to be set (active low). This
means that before the ARM can receive message ready interrupts from the Host Processor, this reg-
ister must be written with 0x0001 (by ARM) to unmask the interrupt.

• The Output Interrupt Mask Register (OIM) resets to 0x00, causing the Mask to be set (active low).
This means that before the Host Processor can receive message ready interrupts from the ARM, this
register must be written with 0x01 (by the Host Processor) to unmask the interrupt.

• The Input and Output Message buffers are each 256 bytes long and 1 byte wide (an overflow in the
index register will not write to the other message buffer, but will start to overwrite the current mes-
sage buffer).

• Addressing of the Input and Output Message Buffers by the Host Processor is implemented indirectly
via the Input and Output Index Registers. An external interrupt signal is generated when the output
status register is set by the ARM7. An ARM7 interrupt signal is generated when the input status reg-
ister is set by the Host Processor.

 7.9.1 Send Message from Host Processor to ARM
• Read Input Status Register. If h01, the ARM has not read out the last message. If 0x00, the ARM has

read the last message and the Input Message Buffer is available for use.
• Clear Input Index Reg by writing any value to its address (b.100).
• Write message into Input Message Buffer by consecutively writing to its address (b.111). Each write

will cause the Input Index Register to increment by 1 and access another byte location.
• Write 0x01 to Input Status Register (address b.011) to interrupt the ARM

GPIO_regBase+ 0x08 Data R/W This register allows GPIO data
output setting

GPIO_regBase+ 0x0C Status R/W Key data flag

GPIO_regBase+ 0x10 Key R Key value

Address Register
Name

R/W Notes

STLC1502

54/81

 7.9.2 Receive Message from ARM by Host Processor
After receiving interrupt from ARM:
• Clear Output Index Register (address b.001) by writing any value.
• Read message from Output Message Buffer by consecutively reading from its address (b.110). Each

read will cause the Output Index Register to increment by 1 and access another byte location.
• Clear the Output Status Reg (address b.000) by writing any value (the ARM can clear the OSR by

writing 0 to it).

 7.9.3 Send Message from ARM to Host Processor
• Read Output Status Register. If h0001, the HP has not read out the last message. If 0x0000, the HP

has read the last message and the Output Message Buffer is available for use.
• Write message into Output Message Buffer. This buffer is directly addressable by the ARM.
• Write 0x0001 to Output Status Register to interrupt the HP

 7.9.4 Receive Message from Host Processor by ARM
After receiving interrupt from HP:
• Read message from Input Message Buffer.This buffer is directly addressable by the ARM.
• Clear the Input Status Reg by writing 0x0001 to its address (the HP can clear the ISR by writing 0 to

it).

In the following table there is the list of the available external signals of the HPI interface.

Table : External signals of HPI

 7.9.5 HPI Memory map

NAME Signal type Description

HPI_CLK IN HPI bus clock form Host Processor

HPI_CS IN Active low select from Host Processor.

HPI_AS IN Address strobe from Host Processor.

HPI_RW IN R/W from Host Processor

HPI_ADDR(2:0) IN Host Processor address

HPI_DATA(7:0) INOUT Host Processor data bus lines.

HP_INT OUT Interrupt to Host Processor

55/81

STLC1502

 7.10 Dual Port SRAM
A dual port SRAM 4096x16 connected between the APB bus and the X bus of the D950 domain, is used as a
mailbox between the ARM7 and the D950. The DPRAM can be written/read everywhere by both the ARM and
the D950. The DPRAM bank has two status sections consisting of 32, 16 bits memory locations, and a message
section consisting 4064 16 bit memory locations.

There are 4 hardware registers: ARM and D950 mailbox mask registers and ARM and D950 mailbox registers.
• Mailbox registers: the writing of any value in a STATUS location will set the corresponding bit in the

MAILBOX to 1. This will generate an interrupt if the corresponding mailbox MASK register bit is set to
1, and won’t if the bit is set to 0. Reading a STATUS location will clear the corresponding bit in the
MAILBOX to 0. (note: Only the ARM can clear the D950 mailbox on a read, and only the D950 can
clear the ARM mailbox on a read. Likewise only the ARM can set the ARM Mailbox bits by writing to
the ARM STATUS registers, and only the D950 can set the D950 Mailbox by writing to the D950 STA-
TUS registers).

• Mailbox MASK registers: writing 0 in a bit location will allow the STATUS location to set the corre-
sponding bit in the MAILBOX, but will mask out the generation of an interrupt. The Mailbox MASK
registers are both reset to all 0’s, so, by default, no interrupts will be generated.

 7.10.1 DPRAM protocol
There can be up to 16 different communication channels that the D950 and the ARM can use to exchange mes-
sages between them. The allocation of the 4064 addressable message buffers locations in the DPRAM is com-
pletely under the programmer’s control. There is no intervention by the hardware on the DPRAM other than use
the first 32 locations to set and clear the MAILBOX registers and ultimately generate interrupts. A software pro-
tocol must be established in advance to safely pass messages.

Every time one of the two devices wants to write or receive a message, it should follow the example protocol

Table : Register map of the DPORT peripheral

Register Name ARM 7 Address Host Processor addr.

Output Status reg HPI_regBase +0x0C00 0x0

Output Index reg HPI_regBase +0x0C02 0x1

Output Mask reg HPI_regBase +0x0C04 0x2

Input Status reg HPI_regBase +0x0C06 0x3

Input Index reg HPI_regBase +0x0C08 0x4

Input Mask reg. HPI_regBase +0x0C0A 0x5

Output Message buffer HPI_regBase +0x0000
-
HPI_regBase +0x01FE

0x6

Output Message buffer HPI_regBase +0x0200
-
HPI_regBase +0x03FE

0x7

STLC1502

56/81

here below, where the D950 sends a message to the ARM. The same apply in the reverse direction with ARM
and D950 side swapped.
• The D950 reads the D950 MAILBOX register bit corresponding to the channel it wants use for the

message. If it is set to 1, the previous message has not been read by the ARM and the channel is not
available. If the content of that bit is 0, then the D950 can write the message for the ARM into the
appropriate section of the DPRAM

• The D950 writes any value in the appropriate D950_STATUS_X location (0<= X<= 15), indicating
that the message has just been put in the DPRAM. This will cause the corresponding bit in the D950
MAILBOX register to be set to 1.

• If the corresponding bit in the D950 Mailbox Mask register is set to 1, then an interrupt request for the
ARM will be generated. The interrupt line is the logical OR of all the unmasked bits in the D950 MAIL-
BOX register.

• The ARM interrupt service routine will read the D950 MAILBOX register and compare this with the
D950 Mailbox MASK register to determine which channel caused the interrupt.

• The ARM reads the appropriate section of the DPRAM. When it has finished reading the message, it
reads the corresponding D950 STATUS location.

• This latest read clears the corresponding bit in the D950 MAILBOX register. If no other unmasked
bits are set in the D950 MAILBOX register, the ARM interrupt clears, otherwise remains set.

• Multiple channels can be used concurrently. It is up to the receiver to manage this eventuality. So the
DPRAM can be used to buffer the messages as it is processed, while other channels are still availa-
ble for communication.

 7.10.2 Dual Port memory map [0x0C180000]
The base address of the Dual Port memory is 0x0C180000.

The base address of control registers is 0x0C188000

The DPRAM is mapped in the ARM memory space as shown below:

57/81

STLC1502

 Figure 13: DPRAM memory map

 4.10.2.1 DPRAM registers map

DPCOMM

0C180000

0C181FFF

ARM_STATUS_0 0C184000

ARM_STATUS_1 0C184004

ARM_STATUS_2 0C184008

ARM_STATUS_3 0C18400C

D950_STATUS_15 0C18407C

ARM_STATUS_15 0C18403C

D950_STATUS_0 0C184040

D950_STATUS_1 0C184044

D950_STATUS_2 0C184048

DPRAM

Reserved

0C180000

0C1803FE
(4096x16)

Reserved

CONTROL
0C188000

0C18800C
REGISTERS

Reserved
0C181FFF

STLC1502

58/81

 8.0 Register Map
Following is the complete list and the description of every peripheral register of the Stradivarius

Address Register Name R/W Notes

DPORT_regBase+ 0x0 D950_MAILBOX R It contains the pend-
ing interrupt
requests that notify
to the ARM has a
message coming
from the D950 to
read. There is an
interrupt line for
each message class

DPORT_regBase+ 0x4 D950_MAILBOX_MASK R/W It contains the mask
for the
D950_MAILBOX

DPORT_regBase+ 0x8 ARM_MAILBOX R It contains the pend-
ing interrupt
requests that notify
to the D950 has a
message coming
from the ARM to
read. There is an
interrupt line for
each message class

DPORT_regBase+
0xC

ARM_MAILBOX_MASK R It contains the mask
for the
ARM_MAILBOX

Address Register Name R/W Note

0x0C000000 Timer1Load R/W TImer block register

0x0C000004 Timer1Value R TImer block register

0x0C000008 Timer1Control R/W TImer block register

0x0C00000C Timer1Clear W TImer block register

59/81

STLC1502

0x0C000010 Timer2Load R/W TImer block register

0x0C000014 Timer2Value R TImer block register

0x0C000018 Timer2Control R/W TImer block register

0x0C00001C Timer2Clear W TImer block register

0x0C000020 Timer3Load R/W TImer block register

0x0C000024 Timer3Value R TImer block register

0x0C000028 Timer3Control R/W TImer block register

0x0C00002C Timer3Clear W TImer block register

0x0C000030 Timer4Load R/W TImer block register

0x0C000034 Timer4Value R TImer block register

0x0C000038 Timer4Control R/W TImer block register

0x0C00003C Timer4Clear W TImer block register

0x0C080000 Control W Miscellaneous

0x0C080010 Status W Miscellaneous

0x0C080020 IDENTIFICATION R Miscellaneous

0x0C100000 IRQStatus R Interrupt Control

0x0C100004 IRQRawStatus R Interrupt Control

0x0C100008 IRQEnableSet R/W Interrupt Control

0x0C10000C IRQSoft W Interrupt Control

0x0C100010 FIQStatus R Interrupt Control

0x0C100014 FIQRawStatus R Interrupt Control

0x0C100018 FIQEnableSet R/W Interrupt Control

Address Register Name R/W Note

STLC1502

60/81

0x0C10001C IRQEnableClear W Interrupt Control

0x0C100020 FIQEnableClear W Interrupt Control

0x0C100024 IRQTestSourcet R/W Interrupt Control

0x0C100028 IRQSourceSel R/W Interrupt Control

0x0C10002C FIQTestSource R/W Interrupt Control

0x0C100030 FIQSourceSel R/W Interrupt Control

0x0C188000 D950_MAILBOX R DPORT

0x0C188004 D950_MAILBOX_MAS
K

R/W DPORT

0x0C188008 ARM_MAILBOX R DPORT

0x0C18800C ARM_MAILBOX_MAS
K

R DPORT

0x0C280004 SPIDR R/W SPI Data I/O register.

0x0C280008 SPICR R/W SPI configuration regis-
ter

0x0C28000C SPISR R/W SPI status register

0x0C300020 I2CCR R/W I2C configuration regis-
ter

0x0C300024 I2CSR1 R/W I2C status register 1

0x0C300028 I2CSR2 R/W I2C status register 2.

0x0C30002C I2CCCR R/W I2C Clock Control reg-
ister.

0x0C300030 I2COAR1 R/W I2C Own Address reg-
ister

Address Register Name R/W Note

61/81

STLC1502

0x0C300034 I2COAR2 R/W I2C Own Address reg-
ister

0x0C300038 I2CDR R/W I2C Data I/O register.

0x0C380000 ASCBaudRate R/W UART Baud rate regis-
ter

0x0C380004 ASCTxBuffer WO UART Transmit buffer
(Fifo)

0x0C380008 ASCRxBuffer RO UART Receive buffer
(Fifo).

0x0C38000C ASCControl R/W UART control register.

0x0C380010 ASCIntEnable R/W UART interrupt enable
register

0x0C380014 ASCStatus RO UART status register.

0x0C380018 ASCGuardtime R/W UART Guartime regis-
ter.

0x0C38001C ASCTimeout R/W UART Timeout register.

0x0C380020 ASCTxReset WO Flush Transmit buffer
(Fifo)

0x0C380024 ASCRxReset WO Flush Receive buffer
(Fifo)

0x0C480000 Control R/W GPIO/KYBD

0x0C480004 Mask W GPIO/KYBD

0x0C480008 Data R/W GPIO/KYBD

0x0C48000C Status R/W GPIO/KYBD

0x0C480010 Key R GPIO/KYBD

Address Register Name R/W Note

STLC1502

62/81

0x0C480000 Output Status reg RO HPI output buffer status
register

0x0C480004 Output Index reg R/W HPI output buffer index
register

0x0C480008 Output Mask reg R/W HPI output interrupt
mask

0x0C48000C Input Status reg RO HPI input buffer status
register

0x0C480010 Input Index reg R/W HPI input buffer index
register

0x0C480014 Input Mask reg. R/W HPI input interrupt
mask

0x0C480800 Output Message buffer WO HPI output buffer regis-
ter

0x0C480C00 Input Message buffer RO HPI input buffer register

0x0C500000 WDTControl R/W WDT control register

0x0C500004 WDT Reset_stat R/W WDT reset the status
register

0x0C500008 WDT Max_count R/W WDT programmable
max count

0x0C50000C WDT Counter R WDT internal counter
value

0x0C600000 MB1Config R/W EDM Bank 1 Config-
uration

0x0C600004 MB2Config R/W EDM Bank 2 Config-
uration

0x0C600008 MB3Config R/W EDM Bank 3 Config-
uration

Address Register Name R/W Note

63/81

STLC1502

0x0C60000C MB4Config R/W EDM Bank 4 Config-
uration

0x0C600010 SDRAM1ConfigLo WO EDM Bank 1 Low
SDRAM

0x0C600014 SDRAM1ConfigHi WO EDM Bank 1 High
SDRAM

0x0C600018 SDRAM2ConfigLo WO EDM Bank 2 Low
SDRAM

0x0C60001C SDRAM2ConfigHi WO EDM Bank 2 High
SDRAM

0x0C600020 SDRAM3ConfigLo WO EDM Bank 3 Low
SDRAM

0x0C600024 SDRAM3ConfigHi WO EDM Bank 3 High
SDRAM

0x0C600028 SDRAM4ConfigLo WO EDM Bank 4 Low
SDRAM

0x0C60002C SDRAM4ConfigHi WO EDM Bank 4 High
SDRAM

0x0C600030 MemConfig R/W EDM Configuration
Register

0x0C600000 CS0 R/W Static ESM_ CS0 bank
control

0x0C600004 CS1 R/W Static ESM_CS1 bank
control

0x0C600008 CS2 R/W Static ESM_CS2 bank
control

Address Register Name R/W Note

STLC1502

64/81

 9.0 D950 Domain

The D950 domain consists of a D950 core, I RAM, I ROM, X RAM, Y RAM, Timer, Emulator, Interrupt controller
and TAP, PCM interface peripherals.

9.0 D950 memory map

The following table provides the memory map of D950 on X, Y, I buses.

 Mapping of D950 Y memory space (1 Word = 16 bit)

Address Area name Area size

0x0000

0x000F

DSP registers 16 Words

0x0010

0x001F

EMU 16 Words

0x0020

0x002F

ITC 16 Words

0x0030

0x005F

Reserved DSP

0x0060

0x006F

TIM 16 Words

0x0070

0xFFFF

RAM Y 64 KWords

65/81

STLC1502

 Mapping of D950 X memory space (1 Word = 16 bit)

 Mapping of D950 I memory space (1 Word = 16 bit)

9.1 DPRAM memory map [0x8000]

The base address of the DPRAM is 0x8000 in the X memory space.

Address Area name Area size

0x0000

0x7FFF

RAM X 32 KWords

0x8000

0xBFFF

DPCOM 16 KWords

0xC000

0xFFFF

PCMIF 16 KWords

Address Area name Area size

0x0000

0x3FFF

ROM I
(first bank)

16 KWords

0x4000

0x7FFF

ROM I
(Second bank)

16 KWords

0x8000

0xBFFF

ROM I
(Third bank)

16 KWords

0xC000

0xFFFF

RAM I 16 KWords

STLC1502

66/81

The base address of control registers is 0xA800 in the X memory space
For a description of DPRAM protocol refer to the DPRAM section in the ARM domain.

DPCOMM

8000

BFFF

ARM_STATUS_0 A000

ARM_STATUS_1 A001

ARM_STATUS_2 A002

ARM_STATUS_3 A003

D950_STATUS_15 A01F

ARM_STATUS_15 A00F

D950_STATUS_0 A010

D950_STATUS_1 A011

D950_STATUS_2 A012

DPRAM

Reserved

8000

8FFF
(4096x16)

Reserved

CONTROL
A800

A803
REGISTERS

Reserved
BFFF

67/81

STLC1502

 10.0 PCM Interface
The PCM interface is used to actually send and receive voice samples.

On the other side, the PCM Block has an interface to the D950 Xbus.

Moreover two other signals to feed the master clock and the hardware reset are present.

Address Register Name R/W Notes

DPORT_regBase+ 0x0 ARM_MAILBOX R It contains the pending inter-
rupt requests that notify to the
D950 has a message coming
from the ARM to read. There
is an interrupt line for each
message class

DPORT_regBase+ 0x1 ARM_MAILBOX_M
ASK

R/W It contains the mask for the
ARM_MAILBOX

DPORT_regBase+ 0x2 D950_MAILBOX R It contains the pending inter-
rupt requests that notify to the
ARM has a message coming
from the D950 to read. There
is an interrupt line for each
message class

DPORT_regBase+ 0x3 D950_MAILBOX_
MASK

R It contains the mask for the
D950_MAILBOX

STLC1502

68/81

Figure 14: PCM-block Interconnection Scheme

The PCM interface has 5 main signals:
• DR (output): this is the serial data stream that the PCM sends to the codec
• DX (input): this is the serial data stream sent by the codec and received by the PCM block
• PCLK (input/output): this is the PCM clock sent to codec. In the application, the frequency is

2.048Mhz. The PCM clock can be generated by the PCM block from internal Master clock or can be
input externally, according to the bit CLKEN in configuration register

• PFS (input/output): this signal is asserted high when the frame number zero is present on the serial
data stream; it is possible to program the codec so that the PCM block asserts this signal on a given
frame (FS). The same frame number is always present in the same time on DR and DX. The PFS
can be generated by division from PCLK or can be input externally, according to FSEN in the config-
uration register.

 10.1 Miscellaneous Interface
This interface has two signals:
• RSTn (input): this is the hardware active low reset
• CLK (input): this is the master input clock coming from the external oscillator at 2.048Mhz in the cur-

rent application.

 10.2 Interrupt Event Management
There are two interrupt lines that goes to the D950.
• ITR3 line (Overrun)
• ITR7 line (Frame synch).

DR
DX
PCLK
PFS

P
C

M

XAE(15:0)

XDE(15:0)
XWREn

XRDEn
XBSEn
ITR3n

ITR7n

RSTn

CLK

D
95

0
M

IS
C

69/81

STLC1502

Figure 15: Interrupt Block

 10.3 Clock Distribution
• The PCM block works at 2.048Mhz clock and it is a fully synchronous design at that frequency. No

gated clock, no latches are used.
• The design is able to support also higher PCM hierarchies such as 4.096Mhz and 8.196Mhz.
• The D950 interface works as a clock stage decoupling block. It can be accessed externally at 66Mhz,

while internally it works at 2.048Mhz.

 10.4 Reset Distribution and Configuration
• The PCM block has an explicit active low reset pin controlled by ARM.
• A software reset is implemented in the PCM_CONFIGURATION register at the address 0x0002.
• In the PCM_CONFIGURATION register there is also a bit that configures the FPGA itself as linear or

PCM coding.

 10.5 Data Flow Management
Per each direction the PCM block contains a double buffer used to store and forward the voice samples. This
has to be big enough to store all (four) voice samples coming (and going) from (to) the SLICs contained in one
PCM frame. Actually the number of bits per voice channel per PCM frame is 8 in case of PCM coding (A low or
u low) and 16 in case of linear coding. Other bits are used to provide information about the number of the logic
channel the frame is associated with.

So, it is necessary to have two memory banks per direction.

For example, in the upstream direction (from the codec to the D950), one bank is used to store the incoming
voice samples (on-line bank) and the other used to keep the voice samples received in the previous PCM frame
(off-line bank) while they are read by the D950. This mechanism is needed because the PCM flow is synchro-

PCM_INTERRUPT_MASK

Enable

D950 ITR3

Other Interrupt Bit Slices

PCM_INTERRUPTPCM_INTERRUPT_ROW

Interrupt Source Interrupt Pending

STLC1502

70/81

nous and cannot be stopped.

The memory banks are swapped between them on PCM frame basis; so while the incoming information is writ-
ten in the on-line memory, the D950 can read the information contained in the previous PCM frame from the off-
line memory bank. Every PCM frame (FS signal based) the on-line memory becomes off-line and viceversa.
This swap is transparent for the D950 so that the D950 sees the two memory banks located always at the same
addresses.

The same scheme in a different hardware block implements the memory buffer for the downstream flow (from
the D950 to the codec).

 10.6 Basic Operation
The PCM block uses the reference clock to generate an internal time base. For example, it generates the FS
signal with the proper timing. Then an internal register has to store the association between the voice channel
(SLIC) and the PCM slots according to the configuration of the codec (DRA# and DXA# registers). The FS signal
is sent not only to the codec, but also to the D950 (through ITR7), in order to give it the proper timing reference.
So, between two subsequent FS signals, the D950 has to read back from the PCM block the voice samples of
the previous PCM frame and has to write in it the PCM samples of the several voice channels that the PCM
block itself will send to the codec in the following PCM frame.

So the ITR7 is an 8Khz interrupt signal that provides the timing reference to the D950.

 10.7 PCM coding Voice Frame

This section describes the operation of the PCM block in case of PCM coding of the voice samples (LIN bit of
the codec CONF register set to 0x0). In this case each voice sample has 8 bits, plus 3 miscellaneous bits per
channel. So a total of 2 direction x 2 banks x 4 channels x 11 bits each (176 bits) are needed. This memory is
implemented internally in the PCM block.

The PCM_VOICE_FRAME_FROM_CODEC_x (x=0..3) and the PCM_VOICE_FRAME_TO_CODEC_x
(x=0..3) are used to store upstream and downstream voice channel x.

Selection between PCM and linear coding is done in the PCM_CONFIGURATION register

 PCM Coding Upstream Basic Operation (from the codec to the D950)

The PCM voice samples coming from the codec are inserted in the on-line upstream memory. In the same PCM
slot, the D950 accesses at the off-line upstream memory through the PCM_VOICE_FRAME_FROM_CODEC_x
register connected to off-line memory. If during a PCM frame, the D950 left some unread voice data in the off-
line memory (in the meantime became on-line) an interrupt even is generated (OV_U bit of the
PCM_INTERRUPT register).

 10.8 Linear coding Voice Frame
If the linear coding (LIN bit of the codec CONF register set to 0x1) is selected, each voice sample is coded as
a 16 bit two’s complement. This means that each voice channel takes two PCM slot to transport the voice infor-
mation. For example, considering the channel x (x=0..3), for the upstream flow (voice sample from the codec to
the D950), the 8 most significant bits are transported in the PCM slot reported in the PCM_SLOT_UP field of
the PCM_SLOT_FROM_CODEC_x register while 8 less significant bits are transported in the following At reset
PCM_LIN_DATA_DOWN=0x0000.

x values: 0..3.

 10.9 PCM Register List
This section reports the list of the PCM block registers in the D950 domain. The address is referred to the base
address where the PCM block is placed on. In other words, they are displacement addresses. The D950 cannot

71/81

STLC1502

access the ARM7 memory space.
 Register List

Address Register Name Description

0x0000 PCM_RESET Reset Register

0x0001 n/a

0x0002 n/a

0x0003 n/a

0x0004 PCM_SLOT_FR
OM_CODEC_0

Upstream PCM
slot Register for
Voice Channel 0

0x0005 PCM_SLOT_FR
OM_CODEC_1

Upstream PCM
slot Register for
Voice Channel 1

0x0006 PCM_SLOT_FR
OM_CODEC_2

Upstream PCM
slot Register for
Voice Channel 2

0x0007 PCM_SLOT_FR
OM_CODEC_3

Upstream PCM
slot Register for
Voice Channel 3

0x0008 PCM_SLOT_TO_
CODEC_0

Downstream PCM
slot Register for
Voice Channel 0

0x0009 PCM_SLOT_TO_
CODEC_1

Downstream PCM
slot Register for
Voice Channel 1

0x000A PCM_SLOT_TO_
CODEC_2

Downstream PCM
slot Register for
Voice Channel 2

0x000B PCM_SLOT_TO_
CODEC_3

Downstream PCM
slot Register for
Voice Channel 3

0x000C PCM_INTERRUP
T

Interrupt

STLC1502

72/81

0x000D PCM_INTERRUP
T_MASK

Interrupt Mask

0x000E PCM_INTERRUP
T_ROW

Interrupt Row

0x000F n/a

0x0010 PCM_VOICE_FR
AME_FROM_CO
DEC_0

Upstream Voice
Sample Register
for channel 0

0x0011 PCM_VOICE_FR
AME_FROM_CO
DEC_1

Upstream Voice
Sample Register
for channel 1

0x0012 PCM_VOICE_FR
AME_FROM_CO
DEC_2

Upstream Voice
Sample Register
for channel 2

0x0013 PCM_VOICE_FR
AME_FROM_CO
DEC_3

Upstream Voice
Sample Register
for channel 3

0x0014 PCM_VOICE_FR
AME_TO_CODE
C_0

Downstream Voice
Sample Register
for channel 0

0x0015 PCM_VOICE_FR
AME_TO_CODE
C_1

Downstream Voice
Sample Register
for channel 1

0x0016 PCM_VOICE_FR
AME_TO_CODE
C_2

Downstream Voice
Sample Register
for channel 2

0x0017 PCM_VOICE_FR
AME_TO_CODE
C_3

Downstream Voice
Sample Register
for channel 3

0x0018 PCM_LIN_VOIC
E_FRAME_FRO
M_CODEC_0

Upstream Linear
Voice Sample
Register for ch 0

Address Register Name Description

73/81

STLC1502

 11.0 Electrical Specifications and Timings

Table 1. Absolute Maximum Ratings

0x0019 PCM_LIN_VOIC
E_FRAME_FRO
M_CODEC_1

Upstream Linear
Voice Sample
Register for ch1

0x001A PCM_LIN_VOIC
E_FRAME_FRO
M_CODEC_2

Upstream Linear
Voice Sample
Register for ch 2

0x001B PCM_LIN_VOIC
E_FRAME_FRO
M_CODEC_3

Upstream Linear
Voice Sample
Register for ch 3

0x001C PCM_LIN_VOIC
E_FRAME_TO_C
ODEC_0

Downstream Lin-
ear Voice Sample
Register for ch 0

0x001D PCM_LIN_VOIC
E_FRAME_TO_C
ODEC_1

Downstream Lin-
ear Voice Sample
Register for ch 1

0x001E PCM_LIN_VOIC
E_FRAME_TO_C
ODEC_2

Downstream Lin-
ear Voice Sample
Register for ch 2

0x001F PCM_LIN_VOIC
E_FRAME_TO_C
ODEC_3

Downstream Lin-
ear Voice Sample
Register for ch 3

Parameter Value

Supply Voltage(Vcc) -0.5 V to 7.0 V

Input Voltage -0.5 V to VCC + 0.5 V

Output Voltage -0.5 V to VCC + 0.5 V

Storage Temperature -65 °C to 150 °C(-85°F to 302°F)

Ambient Temperature 0°C to 70°C(32°F to 158°F)

ESD Protection 2000V

Address Register Name Description

STLC1502

74/81

Table 3. General AC Specifications

Table 2. General DC Specifications

Symbol Parameter Test Condition Min. Typ. Max. Units

General DC

Vdd3 Supply Voltage 3.15 3.3 3.45 V

Vdd Core Supply Voltage 2.35 2.5 2.65 V

Idd3 Operating Current 70 mA

Idd Operating Current 170 mA

Voltage/Current Characteristics

V IL Input low level 0 0.2VDD V

V IH Input high level 0.8VDD VDD V

V OL Output low level 0.4 V

V OH Output high level 0.85VDD V

ARM AC Characteristics

Tmckl MCLK LOW time 15.1 ns

Tmckh MCLK HIGH time 15.1 ns

Tws nWAIT setup to MCLKr 2.3 ns

Twh nWAIT hold from CKf 1.1 ns

Taddr MCLKr to address valid 14.0 ns

Tmsd MCLKf to nMREQ & SEQ valid 17.9 ns

Tah Address hold time from MCLKr 2.4

Trwd MCLKr to nRW valid 14.0

Trwh nRW hold time from MCLKr 2.4

Tcdel MCLK to ECLK delay 2.9

Trstl nRESET LOW for guaranteed
reset

2 MCLK
cycles

D950 AC Characteristics

t0 Master clock cycle time 7.5 ns

t3 CLKOUT high delay 4.0 ns

 t4 CLKOUT low delay 3.3 ns

t5 INCYCLE high delay -0.1 ns

t6 INCYCLE low delay -0.5 ns

75/81

STLC1502

ARM MCLK Timing Characteristics

D950 Clock Timing Diagram

STLC1502

76/81

General ARM Timings

MII Management Clock Timing Specifications

t1 MDC Low Pulse Width 200 — ns

t2 MDC High Pulse Width 200 — ns

t3 MDC Period 400 — ns

t4 MDIO(I) Setup to MDC Rising
Edge

10 — ns

t5 MDIO(O) Hold Time from MDC
Rising Edge

10 — ns

t6 MDIO(O) Valid from MDC Rising
Edge

0 300 ns

77/81

STLC1502

MII Management Clock Timing

Symbol Parameter Test Condition Min. Typ. Max. Units

MII Receive Timing Specification

t1 RX-ER, RX-DV, RXD[3:0] Setup to RX-
CLK

10 — ns

t2 RX-ER, RX-DV, RXD[3:0] Hold After RX-
CLK

10 — ns

t3 RX-CLK High Pulse Width (100 Mbits/s) 14 26 ns

RX-CLK High Pulse Width (10 Mbits/s) 200 ns

t4 RX-CLK Low Pulse Width (100 Mbits/s) 14 26 ns

RX-CLK Low Pulse Width (10 Mbits/s) 140 260 ns

t5 RX-CLK Period (100 Mbits/s) 40 ns

RX-CLK Period (10 Mbits/s) 400 ns

MDC

MDIO(O)

MDIO(I)

t1 t2 t3

t4 t5

t6

STLC1502

78/81

MII Receive Timing

MII Transmit Timing

Symbol Parameter Test Condition Min. Typ. Max. Units

MII Transmit Timing Specification

t1 TX-ER,TX-EN,TXD[3:0]
Setup to TX-CLK Rise

10 — ns

t2 TX-ER,TX-EN,TXD[3:0] Hold
After TX-CLK Rise

0 25 ns

79/81

STLC1502

12.0 PACKAGE

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain

- Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

80/81

STLC1502

Package Type: PQFP 208 / Body 28X28X3.49mm

REF
Dimensions mm Dimensions inch

MIN. TYP. MAX. MIN. TYP. MAX

A 4.10 0.161

A1 0.25 0.010

A2 3.40 3.20 3.60 0.134 0.126 0.142

B 0.17 0.27 0.007 0.011

C 0.09 0.20 0.003 0.008

D 30.60 1.205

D1 28.00 1.102

D3 25.50 1.004

e 0.50 0.020

E 30.60 1.205

E1 28.00 1.102

E3 25.50 1.004

L 0.45 0.60 0.75 0.018 0.024 0.029

L1 1.30 0.51

K 0 deg. (min), 3.5 deg. (typ.), 7 deg.(max)

81/81

STLC1502

