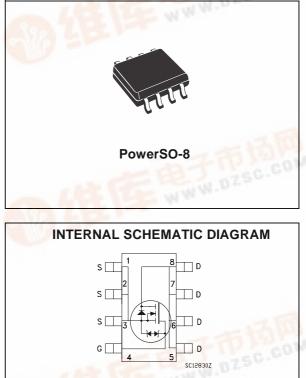


N-CHANNEL 500V - 2.5Ω - 3A PowerSO-8 Zener-Protected MDmesh[™] POWER MOSFET

ТҮРЕ	V _{DSS}	R _{DS(on)}	ID
STSJ3NM50	500 V	< 3 Ω	3 A

- TYPICAL $R_{DS}(on) = 2.5 \Omega$
- HIGH dv/dt AND AVALANCHE CAPABILITIES
- IMPROVED ESD CAPABILITY
- LOW INPUT CAPACITANCE AND GATE
 CHARGE
- LOW GATE INPUT RESISTANCE
- TIGHT PROCESS CONTROL AND HIGH MANUFACTORING YIELDS


DESCRIPTION

The MDmesh[™] is a new revolutionary MOSFET technology that associates the Multiple Drain process with the Company's PowerMESH[™] horizontal layout. The resulting product has an outstanding low on-resistance, impressively high dv/dt and excellent avalanche characteristics. The adoption of the Company's proprietary strip technique yields overall dynamic performance that is significantly better than that of similar completition's products.

APPLICATIONS

The MDmesh[™] family is very suitable for increase the power density of high voltage converters allowing system miniaturization and higher efficiencies.

ABSOLUTE MAXIMUM RATINGS

DRAIN CONTACT ALSO ON THE BACKSIDE

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	500	V
VDGR	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	500	V
V _{GS}	Gate- source Voltage	± 30	V
ID	Drain Current (continuous) at $T_C = 25^{\circ}C$ Drain Current (continuous) at $T_A = 25^{\circ}C$ (1) Drain Current (continuous) at $T_C = 100^{\circ}C$	3 0.63 1.89	A A A
I _{DM} (2)	Drain Current (pulsed)	12	Α
Р _{ТОТ} Ртот	Total Dissipation at $T_C = 25^{\circ}C$ Total Dissipation at $T_A = 25^{\circ}C$ (1)	70 3	W W
220 Kg	Derating Factor (1)	0.02	W/°C
dv/dt (3)	Peak Diode Recovery voltage slope	15	V/ns
T _{stg}	Storage Temperature	- 65 to 150	°C
Τ _i	Max. Operating Junction Temperature	- 03 10 150	C

THERMAL	DATA		
Rthj-c	Thermal Resistance Junction-case Max	1.78	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max (1)	42	°C/W
Тј	Max. Operating Junction Temperature	150	°C
T _{stg}	Storage Temperature	– 65 to 150	°C

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	500			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μA
	Drain Current (V _{GS} = 0)	V_{DS} = Max Rating, T_{C} = 125 °C			10	μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±5	μA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V, I _D = 1.5 A		2.5	3	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (4)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max,}$ $I_{D} = 3 \text{ A}$		0.7		S
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}, \text{ f} = 1 \text{ MHz}, \text{ V}_{GS} = 0$		140		pF
Coss	Output Capacitance			40		pF
C _{rss}	Reverse Transfer Capacitance			40		pF
R _G	Gate Input Resistance	f=1 MHz Gate DC Bias = 0 Test Signal Level = 20mV Open Drain		4		Ω

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 250 V, I _D = 1.5 A		7		ns
tr	Rise Time	$R_G = 4.7\Omega V_{GS} = 10 V$ (see test circuit, Figure 3)		10		ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 3 \text{ A},$ $V_{GS} = 10 \text{ V}$		5.5 2.5 2.4		nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$\begin{array}{c} t_{r(Voff)} \\ t_{f} \\ t_{c} \end{array}$	Off-Voltage Rise Time Fall Time Cross-Over Time			8 9 15		ns ns ns

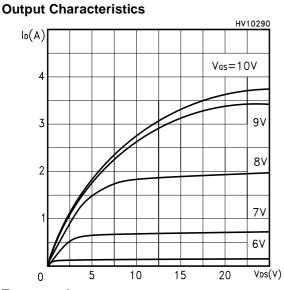
SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				3	А
I _{SDM} (2)	Source-drain Current (pulsed)				12	А
V _{SD} (4)	Forward On Voltage	$I_{SD} = 3 \text{ A}, V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 3$, di/dt = 100A/µs, $V_{DD} = 100$ V, $T_j = 25$ °C (see test circuit, Figure 5)		210 790 7.5		ns nC A
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 3$, di/dt = 100A/µs, $V_{DD} = 100$ V, $T_j = 150$ °C (see test circuit, Figure 5)		282 1.1 7.7		ns nC A

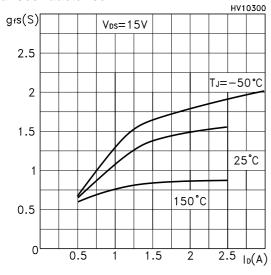
Note: 1. When mounted on 1inch² FR4 Board, 2oz of Cu, t \leq 10 sec.

2. Pulse width limited by safe operating area

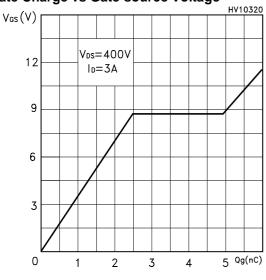
3. I_{SD}<3.3A, di/dt<400Å/µs, V_{DD}<V_{(BR)DSS}, T_J<T_{JMAX}

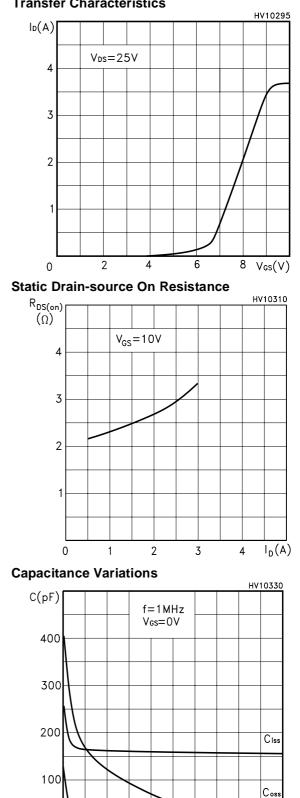

4. Pulsed: Pulse duration = 400 μ s, duty cycle 1.5 %

GATE-SOURCE ZENER DIODE


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-Source Breakdown Voltage	Igs=± 1mA (Open Drain)	30			V

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

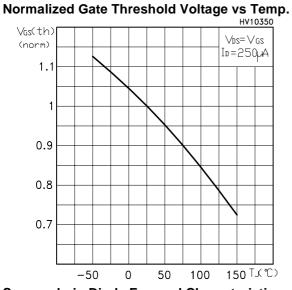

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.



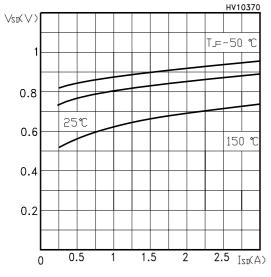
Gate Charge vs Gate-source Voltage

10

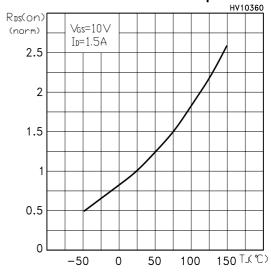
0

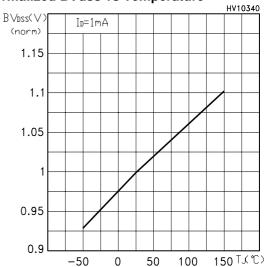

20

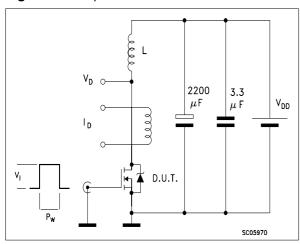
30


40

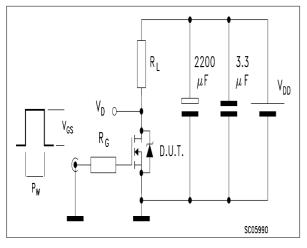
 $V_{DS}(V)$


Transfer Characteristics


Source-drain Diode Forward Characteristics



Normalized On Resistance vs Temperature



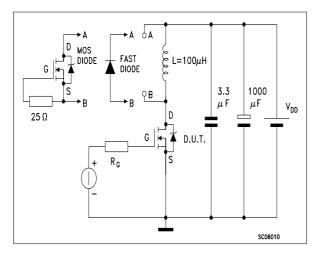
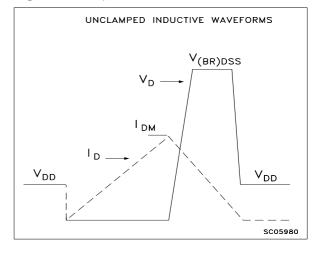


Fig. 1: Unclamped Inductive Load Test Circuit


Fig. 3: Switching Times Test Circuit For Resistive Load

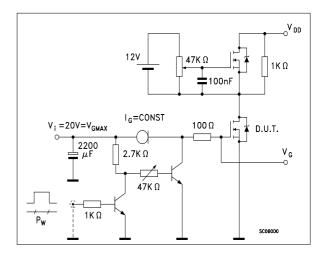
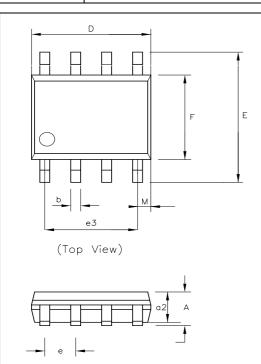
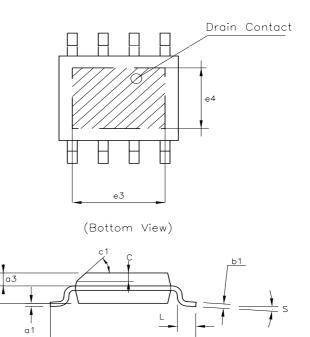

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform




Fig. 4: Gate Charge test Circuit

DIM.	mm.			inch			
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
А			1.75			0.068	
a1	0.1		0.25	0.003		0.009	
a2			1.65			0.064	
a3	0.65		0.85	0.025		0.033	
b	0.35		0.48	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.019	
c1			45°	(typ.)			
D	4.8		5.0	0.188		0.196	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
e4		2.79			0.110		
F	3.8		4.0	0.14		0.157	
L	0.4		1.27	0.015		0.050	
М			0.6			0.023	

PowerSO-8[™] MECHANICAL DATA

F

Powerso-8

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patients or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com