

STW30NM60D

N-CHANNEL 600V - 0.125Ω - 30A TO-247 Fast Diode MDmesh™ MOSFET

Figure 1: Package

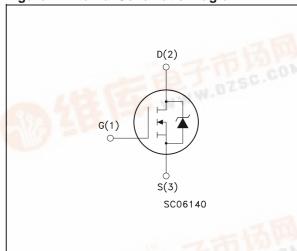
Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	I _D
STW30NM60D	600 V	< 0.145 Ω	30 A

- TYPICAL $R_{DS}(on) = 0.125 \Omega$
- HIGH dv/dt AND AVALANCHE CAPABILITIES
- 100% AVALANCHE RATED
- LOW INPUT CAPACITANCE AND GATE CHARGE
- LOW GATE INPUT RESISTANCE
- FAST INTERNAL RECOVERY DIODE

DESCRIPTION

The FDmesh™ associates all advantages of reduced on-resistance and fast switching with an intrinsic fast-recovery body diode. It is therefore strongly recommended for bridge topologies, in particular ZVS phase-shift converters.


APPLICATIONS

 ZVS PHASE-SHIFT FULL BRIDGE CONVERTERS FOR SMPS AND WELDING EQUIPMENT

TO-247

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING	
STW30NM60D	W30NM60D	TO-247	TUBE	

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	600	V
V _{DGR}	Drain-gate Voltage (R _{GS} = 20 kΩ)	600	V
V _{GS}	Gate- source Voltage	± 30	V
I _D	Drain Current (continuous) at T _C = 25°C 30		А
I _D	Drain Current (continuous) at T _C = 100°C	18.9	А
I _{DM} (•)	Drain Current (pulsed) 120		А
P _{TOT}	Total Dissipation at T _C = 25°C	312	W
	Derating Factor	2.5	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	20	V/ns
T _j T _{stg}	Operating Junction Temperature -55 to 150 Storage Temperature -55 to 150		°C

Table 4: Thermal Data

Ī	Rthj-case Thermal Resistance Junction-case Max		0.4	°C/W
Ī	Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	°C/W
T _I Maximum Lead Temperature For Soldering Purpose		Maximum Lead Temperature For Soldering Purpose	300	°C

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	15	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	740	mJ

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)

Table 6: On /Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	600			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating V _{DS} = Max Rating, T _C = 125°C			10 100	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			± 10	μA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on}	Static Drain-source On Resistance	V _{GS} = 10 V, I _D = 15 A		0.125	0.145	Ω

2/9

^(•) Pulse width limited by safe operating area (1) $I_{SD} \le 30A$, di/dt $\le 400A/\mu$ s, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$.

Table 7: Dynamic

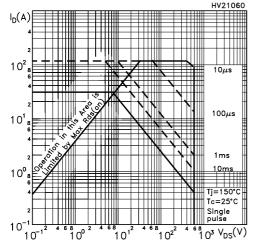

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} = 15 V , I _D = 15 A		16		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0		2520 800 75		pF pF pF
Coss eq (3).	Equivalent Output Capacitance	V _{GS} = 0 V, V _{DS} = 0 to 480 V		390		pF
$\begin{array}{c} t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \end{array}$	Turn-on Delay Time Rise Time Turn-off-Delay Time Fall Time	$V_{DD} = 300 \text{ V, } I_{D} = 15 \text{ A,}$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 15)		32 33 75 35		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 480 \text{ V}, I_{D} = 30 \text{ A},$ $V_{GS} = 10 \text{ V}$ (see Figure 18)		82 24 42	115	nC nC nC

Table 8: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				30 120	A A
V _{SD} (1)	Forward On Voltage	I _{SD} = 30 A, V _{GS} = 0			1.5	V
t _{rr} Q _{rr} IRRM	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 30 A, di/dt = 100 A/ μ s V_{DD} = 50V (see Figure 16)		165 1.1 14		ns nC A
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 30 \text{ A, di/dt} = 100 \text{ A/µs}$ $V_{DD} = 50\text{V, T}_{j} = 150^{\circ}\text{C}$ (see Figure 16)		312 3.3 21		ns nC A

⁽¹⁾ Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
(2) Pulse width limited by safe operating area.
(3) C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.

Figure 3: Safe Operating Area

Figure 4: Output Characteristics

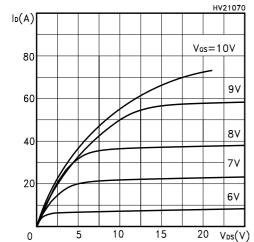


Figure 5: Transconductance

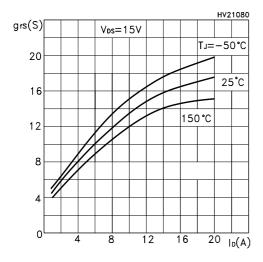
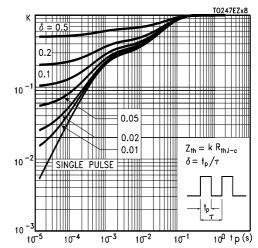



Figure 6: Thermal Impedance

Figure 7: Transfer Characteristics

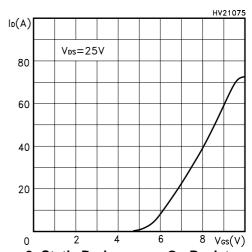
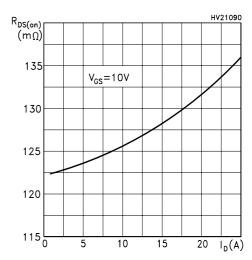



Figure 8: Static Drain-source On Resistance

4/9

Figure 9: Gate Charge vs Gate-source Voltage

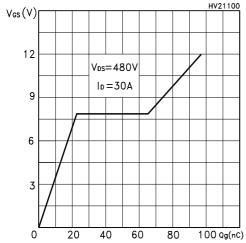


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

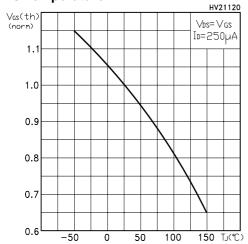


Figure 11: Dource-Drain Diode Forward Characteristics

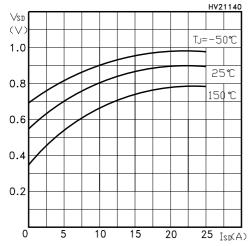


Figure 12: Capacitance Variations

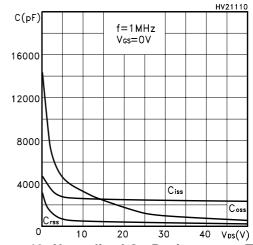


Figure 13: Normalized On Resistance vs Temperature

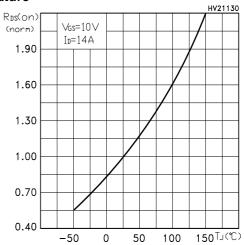


Figure 14: Unclamped Inductive Load Test Circuit

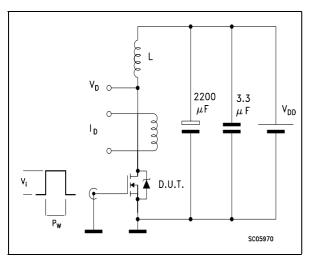


Figure 15: Switching Times Test Circuit For Resistive Load

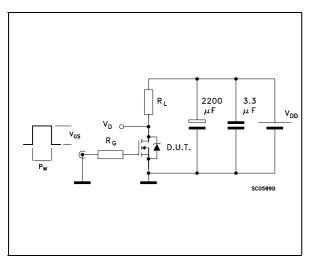
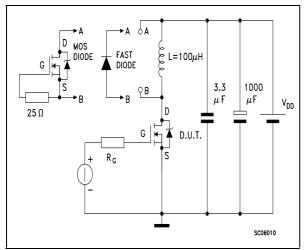



Figure 16: Test Circuit For Inductive Load Switching and Diode Recovery Times

6/9

Figure 17: Unclamped Inductive Wafeform

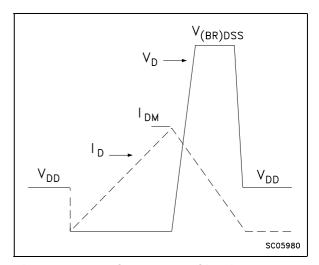
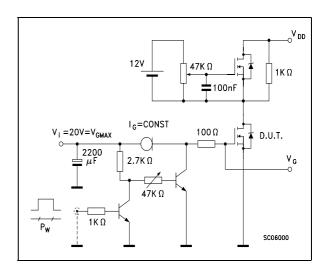
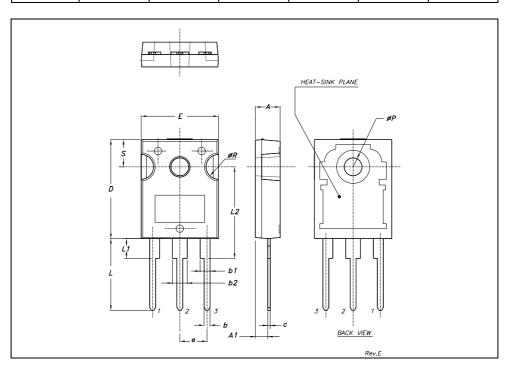




Figure 18: Gate Charge Test Circuit

TO-247 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.85		5.15	0.19		0.20
A1	2.20		2.60	0.086		0.102
b	1.0		1.40	0.039		0.055
b1	2.0		2.40	0.079		0.094
b2	3.0		3.40	0.118		0.134
С	0.40		0.80	0.015		0.03
D	19.85		20.15	0.781		0.793
E	15.45		15.75	0.608		0.620
е		5.45			0.214	
L	14.20		14.80	0.560		0.582
L1	3.70		4.30	0.14		0.17
L2		18.50			0.728	
øΡ	3.55		3.65	0.140		0.143
øR	4.50		5.50	0.177		0.216
S		5.50			0.216	

STW30NM60D

Table 9: Revision History

Date	Revision	Description of Changes
24-June-2004	3	The document change from "ADVANCED" to "COMPLETE".
		New Stylesheet.
		Rds(on) Max@10V changed. See Table 6.

8/9

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

47/.