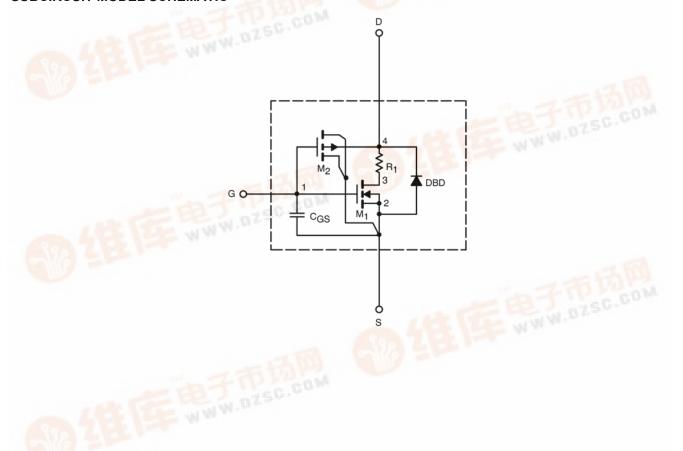


SPICE Device Model SUD50N06-08H Vishay Siliconix

N-Channel 60-V (D-S) 175°C MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- · Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

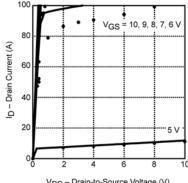
Document Number: 73185 www.vishay.com

SPICE Device Model SUD50N06-08H

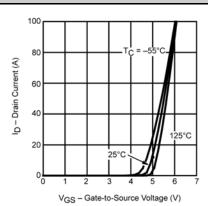
Vishay Siliconix

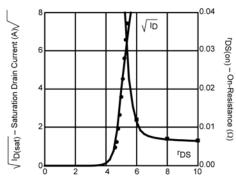
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3.5		V
On-State Drain Current ^a	I _{D(on)}	V_{DS} = 5 V, V_{GS} = 10 V	662		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 10 V, I_D = 20 A	0.0064	0.0065	Ω
		V_{GS} = 10 V, I_D = 20 A, T_J = 125°C	0.0096		
		V_{GS} = 10 V, I_{D} = 20 A, T_{J} = 175°C	0.0114		
Forward Voltage ^a	V _{SD}	I _F = 50 A, V _{GS} = 0 V	0.91	1	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz	6629	7000	pF
Output Capacitance	C _{oss}		463	450	
Reverse Transfer Capacitance	C_{rss}		189	240	
Total Gate Charge ^c	Q_g	$V_{DS} = 30 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 50 \text{ A}$	99	94	nC
Gate-Source Charge ^c	Q_gs		35	35	
Gate-Drain Charge ^c	Q_{gd}		20	20	

Notes

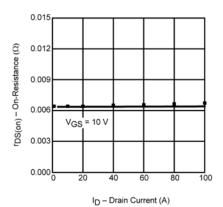

- Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. Guaranteed by design, not subject to production testing. Independent of operating temperature.

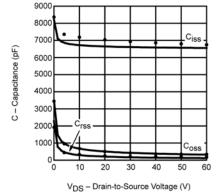
Document Number: 73185 www.vishay.com

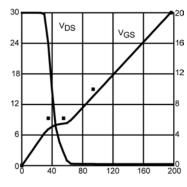



SPICE Device Model SUD50N06-08H Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)







 V_{GS} – Gate-to-Source Voltage (V)

Q_g – Total Gate Charge (nC)

Note: Dots and squares represent measured data.

Document Number: 73185 www.vishay.com