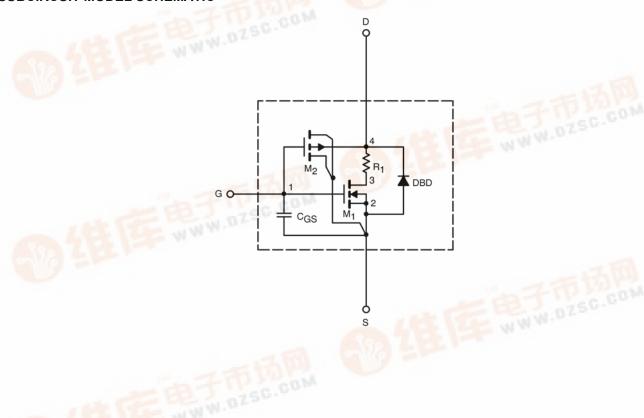


SPICE Device Model SUM110N03-03P Vishay Siliconix

N-Channel 30-V (D-S), 175°C MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- · Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device

SUBCIRCUIT MODEL SCHEMATIC

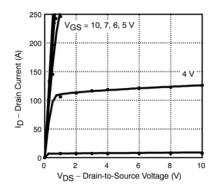
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

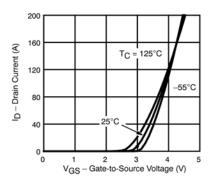
Document Number: 70095 www.vishay.com

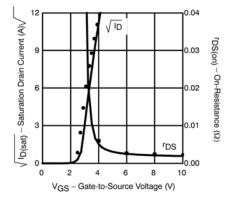
SPICE Device Model SUM110N03-03P

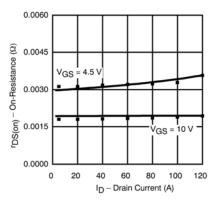
Vishay Siliconix

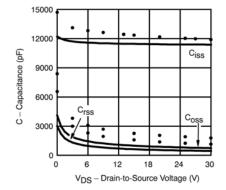
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.8		V
On-State Drain Current ^a	I _{D(on)}	V _{DS} = 5 V, V _{GS} = 10 V	1708		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 30 A	0.0019	0.0020	Ω
		V _{GS} = 10 V, I _D = 30 A, T _J = 125°C	0.0026		
		V _{GS} = 4.5 V, I _D = 20 A	0.0030	0.0031	
Forward Voltage ^a	V_{SD}	I _F = 110 A, V _{GS} = 0 V	0.93	1.1	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz	11410	12100	pF
Output Capacitance	C _{oss}		811	1910	
Reverse Transfer Capacitance	C _{rss}		498	1250	
Total Gate Charge ^c	Q_g	V _{DS} = 15 V, V _{GS} = 10 V, I _D = 110 A	194	172	nC
Gate-Source Charge ^c	Q_{gs}		40	40	
Gate-Drain Charge ^c	Q_{gd}		40	22	
Turn-On Delay Time ^c	t _{d(on)}	V_{DD} = 15 V, R_L = 0.18 Ω $I_D \cong 110$ A, V_{GEN} = 10 V, R_G = 2.5 Ω I_F = 85 A, di/dt = 100 A/μs	19	20	ns
Rise Time ^c	t _r		23	20	
Turn-Off Delay Time ^c	t _{d(off)}		50	90	
Fall Time ^c	t _f		44	25	
Source-Drain Reverse Recovery Time	t _{rr}		31	60	

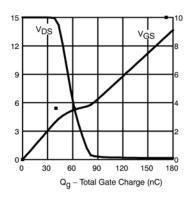

- Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. Guaranteed by design, not subject to production testing. Independent of operating temperature. a. b.


Document Number: 70095 www.vishay.com




SPICE Device Model SUM110N03-03P Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 70095 www.vishay.com