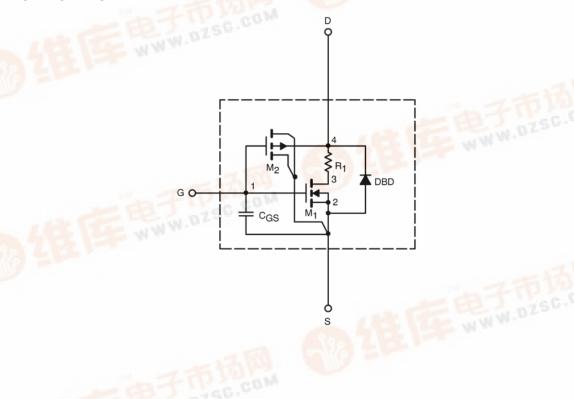


SPICE Device Model SUM110N06-3m4L Vishay Siliconix

N-Channel 60-V (D-S) 175°C MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- · Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device

SUBCIRCUIT MODEL SCHEMATIC

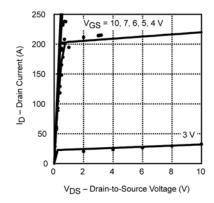
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

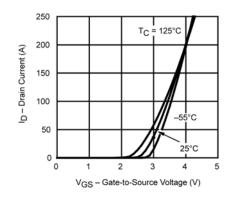
Document Number: 73060 www.vishay.com

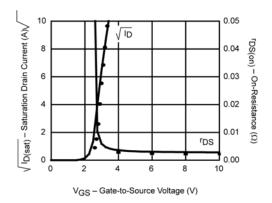
SPICE Device Model SUM110N06-3m4L

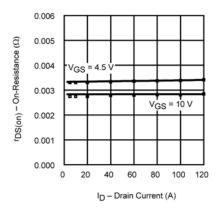
Vishay Siliconix

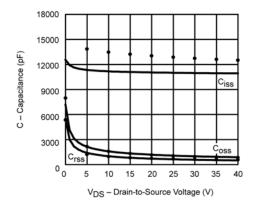
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.5		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	1640		А
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}$	0.0028	0.0028	Ω
		V_{GS} = 10 V, I_{D} = 30 A, T_{J} = 125°C	0.0041		
		V_{GS} = 10 V, I_{D} = 30 A, T_{J} = 175°C	0.0047		
		V _{GS} = 4.5 V, I _D = 20 A	0.0036	0.0033	
Forward Voltage ^a	V _{SD}	I _F = 90 A, V _{GS} = 0 V	0.90	1	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz	11010	12900	pF
Output Capacitance	C_{oss}		1088	1060	
Reverse Transfer Capacitance	C _{rss}		645	700	
Total Gate Charge ^c	Q_g	V _{DS} = 30 V, V _{GS} = 10 V, I _D = 110 A	224	200	nC
Gate-Source Charge ^c	Q_{gs}		50	50	
Gate-Drain Charge ^c	Q_{gd}		33	33	

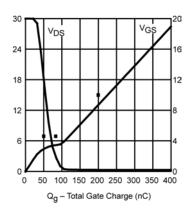

- Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2%.
 Guaranteed by design, not subject to production testing.
 Independent of operating temperature. b.


Document Number: 73060 www.vishay.com




SPICE Device Model SUM110N06-3m4L Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data

Document Number: 73060 www.vishay.com