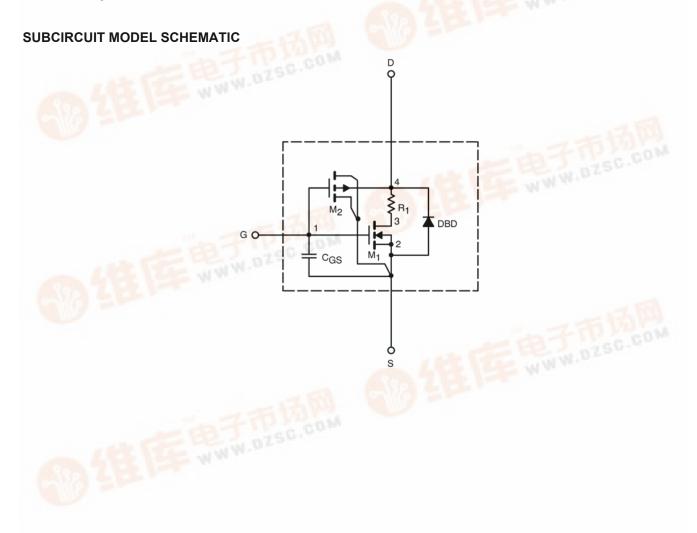
VISHAY

SPICE Device Model SUM50N03-13LC Vishay Siliconix

Vishay Silic N-Channel 30-V (D-S) 175°C MOSFET with Sense Terminal

CHARACTERISTICS


- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

找@PDF

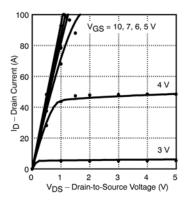
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

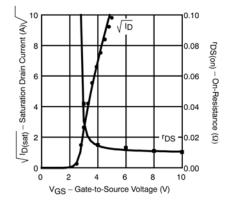
SPICE Device Model SUM50N03-13LC Vishay Siliconix

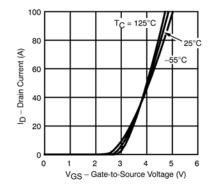
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = 250 μ A	1.8		V
On-State Drain Current ^a	I _{D(on)}	V_{DS} = 5 V, V_{GS} = 10 V	434		А
Drain-Source On-State Resistance ^a		V_{GS} = 10 V, I _D = 25 A	0.010	0.010	Ω
	۲ _{DS(on)}	V_{GS} = 10 V, I_{D} = 25 A, T_{J} = 125°C	0.016	0.016	
		V_{GS} = 10 V, I_D = 25 A, T_J = 175°C	0.018	0.018	
		V_{GS} = 4.5 V, I _D = 24 A	0.014	0.014	
Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = 50 A, $V_{\rm GS}$ = 0 V	0.90	1.3	V
Dynamic ^b					
Input Capacitance	C _{iss}	V_{GS} = 0 V, V_{DS} = 25 V, f = 1 MHz	2009	1960	pF
Output Capacitance	C _{oss}		367	380	
Reverse Transfer Capacitance	C _{rss}		111	180	
Total Gate Charge ^c	Qg	V_{DS} = 15 V, V_{GS} = 10 V, I_{D} = 50 A	34	35	nC
Gate-Source Charge ^c	Q _{gs}		7.6	7.6	
Gate-Drain Charge ^c	Q _{gd}		5.6	5.6	
Turn-On Delay Time ^c	t _{d(on)}	$V_{DD} = 15 \text{ V}, \text{ R}_{L} = 0.30 \Omega$ $I_{D} \cong 50 \text{ A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_{G} = 2.5 \Omega$ $I_{F} = 50, \text{A di/dt} = 100 \text{ A/}\mu\text{s}$	23	10	ns
Rise Time ^c	tr		19	93	
Turn-Off Delay Time ^c	$t_{d(\text{off})}$		8	30	
Fall Time ^c	t _f		10	10	
Reverse Recovery Time	t _{rr}		29	35	

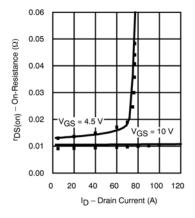
Notes

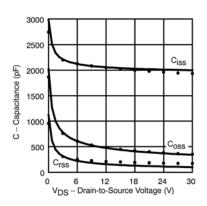
Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. Guaranteed by design, not subject to production testing. Independent of operating temperature. a.


b.


C.




SPICE Device Model SUM50N03-13LC Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

