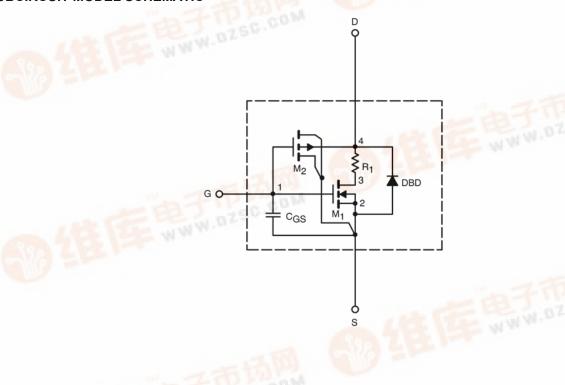


SPICE Device Model SUM60N10-17 Vishay Siliconix

N-Channel 100-V (D-S) 175°C MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- · Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

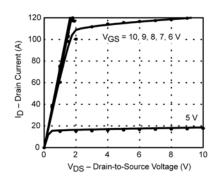
Document Number: 72140 www.vishay.com

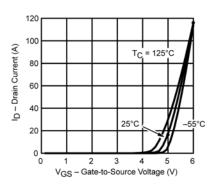
SPICE Device Model SUM60N10-17

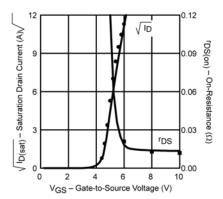
Vishay Siliconix

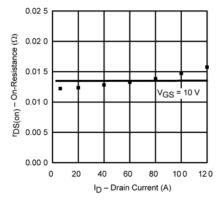
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_D = 250 μ A	3.2		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS}\geq 5$ V, V_{GS} = 10 V	366		Α
Drain-Source On-State Resistance ^a		$V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}$	0.013	0.013	Ω
		V_{GS} = 6 V, I_D = 20 A	0.015	0.015	
	r _{DS(on)}	V_{GS} = 10 V, I_{D} = 30 A, T_{J} = 125°C	0.024		
		V _{GS} = 10 V, I _D = 30 A, T _J = 175°C	0.030		
Forward Voltage ^a	V_{SD}	I _F = 30 A, V _{GS} = 0 V	0.90	1	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz	4377	4300	pF
Output Capacitance	C _{oss}		482	450	
Reverse Transfer Capacitance	C_{rss}		239	175	
Total Gate Charge ^c	Qg	V_{DS} = 50 V, V_{GS} = 10 V, I_{D} = 60 A	57	65	nC
Gate-Source Charge ^c	Q_{gs}		25	25	
Gate-Drain Charge ^c	Q_{gd}		19	19	
Turn-On Delay Time ^c	t _{d(on)}	V_{DD} = 50 V, R_{L} = 1.5 Ω $I_{D} \cong 60$ A, V_{GEN} = 10 V, R_{G} = 2.5 Ω I_{F} = 50 A, di/dt = 100 A/ μ s	25	15	ns
Rise Time ^c	t _r		12	12	
Turn-Off Delay Time ^c	$t_{\text{d(off)}}$		17	30	
Fall Time ^c	t _f		10	10	
Source-Drain Reverse Recovery Time	t _{rr}		110	125	

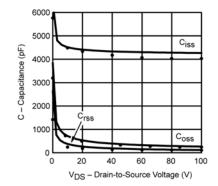
Notes

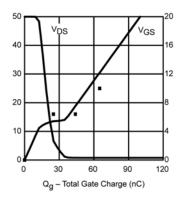

- Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2%.
 Guaranteed by design, not subject to production testing.
 Independent of operating temperature.


Document Number: 72140 www.vishay.com




SPICE Device Model SUM60N10-17 Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 72140 www.vishay.com