查询SUR50N03-09P供应商

SPICE Device Model SUR50N03-09P Vishay Siliconix

N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

Apply for both Linear and Switching Application

- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

お 対象 の PDF

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

SPICE Device Model SUR50N03-09P Vishay Siliconix

SPECIFICATIONS (T _J = 25° C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static	·		•		•
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_{D} = 250 μ A	1.5		V
On-State Drain Current ^b	I _{D(on)}	V_{DS} = 5 V, V_{GS} = 10 V	575		А
Drain-Source On-State Resistance ^b	r _{DS(on)}	V_{GS} = 10 V, I _D = 20 A	0.0073	0.0076	Ω
		V_{GS} = 10 V, I _D = 20 A, T _J = 125°C	0.011		
		V_{GS} = 4.5 V, I _D = 20 A	0.012	0.0115	
Forward Voltage ^b	V _{SD}	$I_{\rm S}$ = 50 A, $V_{\rm GS}$ = 0 V	0.91	1.2	V
Dynamic ^a					
Input Capacitance	C _{iss}	V_{GS} = 0 V, V_{DS} = 25 V, f = 1 MHz	2151	2200	pF
Output Capacitance	C _{oss}		436	410	
Reverse Transfer Capacitance	C _{rss}		123	180	
Total Gate Charge ^c	Qg	V_{DS} = 15 V, V_{GS} = 4.5 V, I_{D} = 50 A	15	11	nC
Gate-Source Charge ^c	Q _{gs}		7.5	7.5	
Gate-Drain Charge ^c	Q_{gd}		5	5	
Turn-On Delay Time ^c	t _{d(on)}	$\label{eq:V_DD} \begin{array}{l} V_{DD} = 15 \ V, \ R_L = 0.30 \ \Omega \\ I_D \cong \ 50 \ A, \ V_{GEN} = 10 \ V, \ R_G = 2.5 \ \Omega \\ \end{array}$ $I_F = 50 \ A, \ di/dt = 100 \ A/\mu s$	9	9	ns
Rise Time ^c	tr		12	80	
Turn-Off Delay Time ^c	t _{d(off)}		25	22	
Fall Time ^c	t _f		32	8	
Source-Drain Reverse Recovery Time	t _{rr}		31	35	

Notes

Guaranteed by design, not subject to production testing. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. Independent of operating temperature. a. b.

C.

SPICE Device Model SUR50N03-09P **Vishay Siliconix**

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

VDS - Drain-to-Source Voltage (V)

