## M／A－COM

# 3 Volt GaAs SPDT Switch DC－2．0 GHz 

SOT－26 ${ }^{1}$

## Description

M／A－COM＇s SW－395 is a GaAs monolithic switch in a low cost SOT－26 surface mount plastic package．The SW－395 is ideally suited for applications where very low power consumption，low intermodulation products，very small size and low cost are required．Typical application is an internal／external antenna select switch for portable telephones and data radios．In addi－ tion，because of its low loss，good isolation and inherent speed， the SW－395 can be used as a conventional T／R switch or as an antenna diversity switch．The SW－395 can be used in power applications up to 0.5 Watts in systems such as cellular，PCN， GSM an other analog／digital wireless communications systems．

The SW－395 is fabricated using a mature 1－micron gate length GaAs MESFET process．The process features full chip passiva－ tion for increased performance and reliability．

## Features

－Low Insertion Loss：＜0．7 dB＠ 900 MHz
－Low Power Consumption：$<10 \mu \mathrm{~A} @=3$ VDC
－Very High Intercept Point： $52 \mathrm{dBm} \mathrm{IP}_{3}$
－Both Positive and Negative 3 to 8 V Control
－Low Cost SOT－26 Package


1．Dimensions are in：inches $/ \mathrm{mm}$
Ordering Information

| Part Number | Package |
| :---: | :---: |
| SW－395 PIN | SOT－26 Plastic Package |
| SW－395TR | Forward Tape and Reel ${ }^{1}$ |

1．Refer to Application Note M513 for reel size information．

Electrical Specifications： $\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}^{1}$

| Parameter | Test Conditions |  | Units | Min． | Typ． | Max． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Insertion Loss | $\begin{aligned} & \text { DC }-1.0 \mathrm{GHz} \\ & 1.0-2.0 \mathrm{GHz} \end{aligned}$ |  | dB |  | 0.7 | 0.9 |
|  |  |  | dB |  | 0.8 | 1.0 |
| Isolation | $\begin{aligned} & \mathrm{DC}-1.0 \mathrm{GHz} \\ & 1.0-20 \mathrm{GHz} \end{aligned}$ |  | dB | 23 | 25 |  |
|  |  |  | dB | 17 | 19 |  |
| VSWR | DC－2．0 GHz |  |  |  | 1．3：1 |  |
| 1 dB Compression | Input Power（3V Control） Input Power（5V Control） Input Power（3V Control） Input Power（5V Control） | 0．5 GHz | dBm |  | 27 |  |
|  |  | 0．5 GHz | dBm |  | 28 |  |
|  |  | 0.05 GHz | dBm |  | 16 |  |
|  |  | 0.05 GHz | dBm |  | 18 |  |
| $\mathrm{T}_{\text {rise }}, \mathrm{T}_{\text {fall }}$ | $10 \%$ to $90 \%$ RF， $90 \%$ to $10 \%$ RF $50 \%$ Control to $90 \%$ RF，Control to $10 \%$ RF In－band |  | $\mu \mathrm{S}$ |  | 7 |  |
| $\mathrm{T}_{\text {on }}, \mathrm{T}_{\text {off }}$ |  |  | $\mu \mathrm{S}$ |  | 8 |  |
| Transients |  |  | mV |  | 38 |  |
| Input IP 2 | 2－Tone， 5 MHz spacing， 3 V Control 0.05 GHz <br> ＋10 dBm each 0.5 GHz |  | $\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$ |  | $\begin{aligned} & \hline 61 \\ & 71 \\ & \hline \end{aligned}$ |  |
| Input $\mathrm{IP}_{3}$ | 2－Tone， 5 MHz spacing， 3 V Control 0.05 GHz <br> ＋10 dBm each 0.5 GHz |  | dBm |  | 48 |  |
|  |  |  | dBm |  | 52 |  |

（ब）d）拊Alhemeasurements at 1 GHz in a $50 \Omega$ system with a 3 V control unless otherwise specified．Loss varies at $0.003 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ ．

## Absolute Maximum Ratings ${ }^{1}$

| Parameter | Absolute Maximum |
| :--- | :---: |
| Input Power | +33 dBm |
| Operating Voltage | +8.5 Volts |
| Operating Temperature | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

1. Exceeding any one or a combination of these limits may cause permanent damage.

## Truth Table

| Mode <br> (Control) | Control <br> $\mathbf{A}$ | Control <br> B | RFC - RF1 | RFC - RF2 |
| :--- | :---: | :---: | :---: | :---: |
| Positive $^{1}$ | $0 \pm 0.2 \mathrm{~V}$ <br> +3 V to +8 V | +3 V to +8 V <br> $0 \pm 0.2 \mathrm{~V}$ | Off <br> On | On <br> Off |
| Positive/ | $-\mathrm{Vc} \pm 0.2 \mathrm{~V}$ | +Vc | On | Off |
| Negative $^{1,2}$ | +Vc | $-\mathrm{Vc} \pm 0.2 \mathrm{~V}$ | Off | On |
| Negative $^{3}$ | $0 \pm 0.2 \mathrm{~V}$ <br>  <br> -3 V to -8 V | -3 V to -8 V <br> $0 \pm 0.2 \mathrm{~V}$ | On <br> Off | Off |
| On |  |  |  |  |

1. External DC blocking capacitors are required on all RF ports.
2. $|-\mathrm{Vc}| \leq 8 \mathrm{~V}$.
3. If negative control is used, DC blocking capacitors are not required on RF ports.

## Typical Performance Curves



## Functional Schematic ${ }^{1}$



1. DC blocking capacitors not required if negative control voltage is used.

