∑询\$\5801811供应商

ULTRA-PRECISION DIFFERENTIAL LVPECL 2:1 MUX with INTERNAL TERMINATION

Precision Edge™ SY58018U

FEATURES

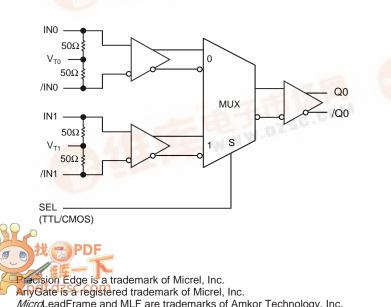
- Guaranteed AC performance over temperature and voltage:
 - DC to 5Gbps data throughput
 - DC to > 4GHz f_{MAX} (clock)
 - < 260ps propagation delay
 - < 110ps t_r / t_f times
- Ultra-low crosstalk-induced jitter: 0.7ps_{rms}
- Ultra-low jitter design:
 - < 1ps_{rms} random jitter
 - < 10ps_{p-p} deterministic jitter
 - < 10ps⁻_{p-p} total jitter (clock)
- Unique input termination and V_T pin accepts DCcoupled and AC-coupled inputs (CML, PECL, LVDS)
- 800mV (100k) LVPECL output swing
- Power supply 2.5V ±5% or 3.3V ±10%
- -40°C to +85°C temperature range
- Available in 16-pin (3mm × 3mm) MLF[™] package

APPLICATIONS

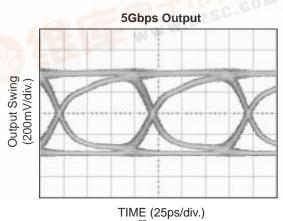
- Redundant clock distribution
- SONET/SDH clock/data distribution
- Loopback
- Fibre Channel distribution

Precision Edge™

DESCRIPTION

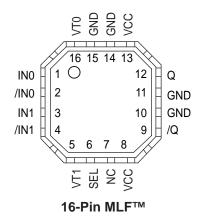

The SY58018U is a 2.5V/3.3V precision, high-speed, 2:1 differential MUX capable of handling clocks up to 4GHz and data up to 5Gbps.

The differential input includes Micrel's unique, 3-pin input termination architecture that allows customers to interface to any differential signal (AC- or DC-coupled) as small as 100mV without any level shifting or termination resistor networks in the signal path. The outputs are 800mV, 100k compatible, LVPECL, with extremely fast rise/fall times guaranteed to be less than 110ps.


The SY58018U operates from a 2.5V ±5% supply or a 3.3V ±10% supply and is guaranteed over the full industrial temperature range of −40°C to +85°C. For applications that require CML outputs, consider the SY58017U or for 400mV LVPECL outputs the SY58019U. The SY58018U is part of Micrel's high-speed, Precision EdgeTM product line.

All support documentation can be found on Micrel's web site at www.micrel.com.

FUNCTIONAL BLOCK DIAGRAM



TYPICAL PERFORMANCE

 $(2^{23}-1)$ (2²³-1)

PACKAGE/ORDERING INFORMATION

PIN DESCRIPTION

Pin Number Pin Name Pin Function 1, 2 IN0. /IN0 Differential Input: These input pairs are the differential signal inputs to the device. They 3, 4 IN1, /IN1 accept differential AC- or DC-coupled signals as small as 100mV. Each pin of a pair internally terminates to a V_T pin through 50 Ω . Note that these inputs will default to an indeterminate state if left open. Please refer to the "Input Interface Applications" section for more details. 16, 5 VT0, VT1 Input Termination Center-Tap: Each side of the differential input pair terminates to a V_{T} pin. The V_{T0} and V_{T1} pins provide a center-tap to a termination network for maximum interface flexibility. See "Input Interface Applications" section for more details. 6 SEL This single-ended TTL/CMOS compatible input selects the inputs to the multiplexer. Note that this input is internally connected to a $25k\Omega$ pull-up resistor and will default to a logic HIGH state if left open. 7 NC No connect. VCC Positive Power Supply: Bypass with 0.1μ F $||0.01\mu$ F low ESR capacitors. 0.01μ F capacitor 8,13 should be as close to V_{CC} pin as possible. Differential Outputs: This 100k compatible LVPECL output pair is the output of the device. 12,9 Q. /Q Normally terminate with 50 Ω to V_{CC} – 2V. See "Output Interface Applications" section. It is a logic function of the INO, IN1, and SEL inputs. Please refer to the "Truth Table" for details. 10, 11, 14, 15 GND, Ground. Ground pins and exposed pad must be connected to the same ground plane. Exposed Pad

TRUTH TABLE

SEL	Output
0	CH0 Input Selected
1	CH1 Input Selected

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking
SY58018UMI	MLF-16	Industrial	018U
SY58018UMITR ⁽²⁾	MLF-16	Industrial	018U

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^{\circ}C$, DC electricals only.

2. Tape and Reel.

Absolute Maximum Ratings⁽¹⁾

Power Supply Voltage (V _{CC}) –0.5V to +4.0V	/
Input Voltage (V_IN)–0.5V to V_CC	С
LVPECL Output Current (I _{OUT})	
Continuous50mA	٩
Surge100mA	١
Termination Current ⁽³⁾	
Source or Sink Current on V _T pin±100mA	١
Input Current	
Source or Sink Current on IN, /IN pin±50mA	٩
Lead Temperature (soldering, 10 sec.) 265°C)
Storage Temperature Range (T_S)–65°C to +150°C)

Operating Ratings⁽²⁾

Power Supply Voltage (V _{CC})	
	+3.0V to +3.6V
Ambient Temperature Range (T _A)	40°C to +85°C
Package Thermal Resistance ⁽⁴⁾	
MLF™ (θ _{JA})	
Still-Air	60°C/W
MLF™ (ψ _{JB})	
Junction-to-Board	

DC ELECTRICAL CHARACTERISTICS⁽⁵⁾

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CC} Power Supply Voltage		$V_{CC} = 2.5V$ $V_{CC} = 3.3V$	2.375 3.0	2.5 3.3	2.625 3.6	V V
I _{CC}	Power Supply Current	No load, max. V _{CC}		50	65	mA
R _{DIFF_IN}	Differential Input Resistance (IN0-to-/IN0, IN1-to-/IN1)		80	100	120	Ω
R _{IN}	Input Resistance (IN0-to- V_{T0} , /IN0-to- V_{T0} , IN1-to- V_{T1} , /IN1-to- V_{T1})		40	50	60	Ω
V _{IH}	Input HIGH Voltage (IN0, /IN0, IN1, /IN1)	Note 6	V _{CC} – 1.6		V _{CC}	V
V _{IL}	Input LOW Voltage (IN0, /IN0, IN1, /IN1)		0		V _{IH} – 0.1	V
V _{IN}	Input Voltage Swing (IN0, /IN0, IN1, /IN1)	See Figure 1a	100		1700	mV
V _{DIFF_IN}	Differential Input Voltage Swing IN0, /IN0 , IN1, /IN1	See Figure 1b	200			mV
V _{T IN}	IN to V _T (IN0, /IN0, IN1, /IN1)				1.28	V

 $T_A = -40^{\circ}C$ to +85°C, unless otherwise stated.

Notes:

- 1. Permanent device damage may occur if "*Absolute Maximum Ratings*" are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to "*Absolute Maximum Ratings*" conditions for extended periods may affect device reliability.
- 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- 3. Due to the limited drive capability, use for input of the same package only.
- 4. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential (GND) on the PCB. ψ_{JB} uses 4-layer θ_{JA} in still-air number, unless otherwise stated.
- 5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

6. V_{IH} (min) not lower than 1.2V.

LVPECL OUTPUT DC ELECTRICAL CHARACTERISTICS⁽⁷⁾

V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A = -40°C to +85°C; R_L = 50 Ω to V_{CC} -2V, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage Q, /Q		V _{CC} -1.145		V _{CC} - 0.895	V
V _{OL}	Output LOW Voltage Q, /Q		V _{CC} -1.945		V _{CC} -1.695	V
V _{OUT}	Output Differential Swing Q, /Q	See Figure 1a	550	800		mV
V _{DIFF_OUT}	Differential Output Voltage Swing Q, /Q	See Figure 1b	1100	1600		mV

LVTTL/CMOS DC ELECTRICAL CHARACTERISTICS⁽⁷⁾

 V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A= -40°C to 85°C

Symbol	Parameter	Condition	Min	Тур	Мах	Units
V _{IH}	Input HIGH Voltage		2.0			V
V _{IL}	Input LOW Voltage				0.8	V
I _{IH}	Input HIGH Current				40	μΑ
I _{IL}	Input LOW Current		-300			μA

Note:

7. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

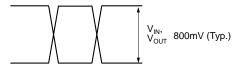
AC ELECTRICAL CHARACTERISTICS⁽⁸⁾

V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A = -40°C to 85°C, R_I = 50 Ω to V_{CC} - 2V, unless otherwise stated.

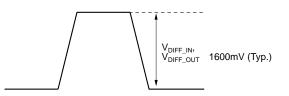
Symbol	Paramete	r	Condition		Min	Тур	Max	Units
f _{MAX}	Maximum	Operating Frequency		NRZ Data	5			Gbps
			$V_{OUT} \ge 400 mV$	Clock		4		GHz
t _{pd}	Differentia	Il Propagation Delay (IN0 or IN1-to-Q) (SEL-to-Q)			110 50	190 180	240 350	ps ps
t _{pd} Tempco	1	Il Propagation Delay ure Coefficient				75		fs/°C
t _{SKEW}		Input-to-Input Skew	Note 9			4	15	ps
		Part-to-Part Skew	Note 10				100	ps
t _{JITTER}	Data	Random Jitter	Note 11				1	ps _{rms}
		Deterministic Jitter	Note 12				10	ps _{p-p}
	Clock	Cycle-to-Cycle Jitter	Note 13				1	ps _{rms}
		Total Jitter	Note 14				10	ps _{p-p}
	Crosstalk-	Induced Jitter	Note 15				0.7	ps _{rms}
t _r , t _f	Output Ris	se/Fall Time	20% to 80%, at full swing		35	75	110	ps

Notes:

8. High frequency AC parameters are guaranteed by design and characterization.

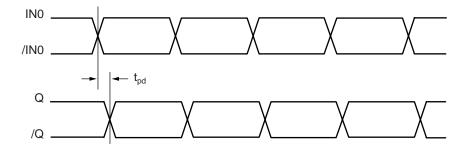

9. Input-to-input skew is the difference in time from and input-to-output in comparison to any other input-to-output. In addition, the input-to-input skew does not include the output skew.

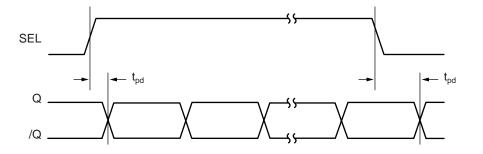
- 10. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.
- 11. RJ is measured with a K28.7 comma detect character pattern, measured at 10.7Gbps and 2.5Gbps/3.2Gbps.

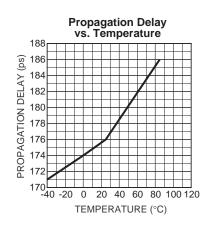

12. DJ is measured at 2.5Gbps/3.2Gbps, with both K28.5 and 2²³ – 1 PRBS pattern.

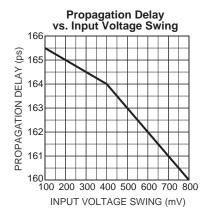
- 13. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, T_n T_{n-1} where T is the time between rising edges of the output signal.
- Total jitter definition: with an ideal clock input of frequency ≤ f_{MAX} no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value.
- 15. Crosstalk is measured at the output while applying two similar frequencies that are asynchronous with respect to each other at the inputs.

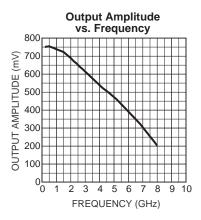
SINGLE-ENDED AND DIFFERENTIAL SWINGS





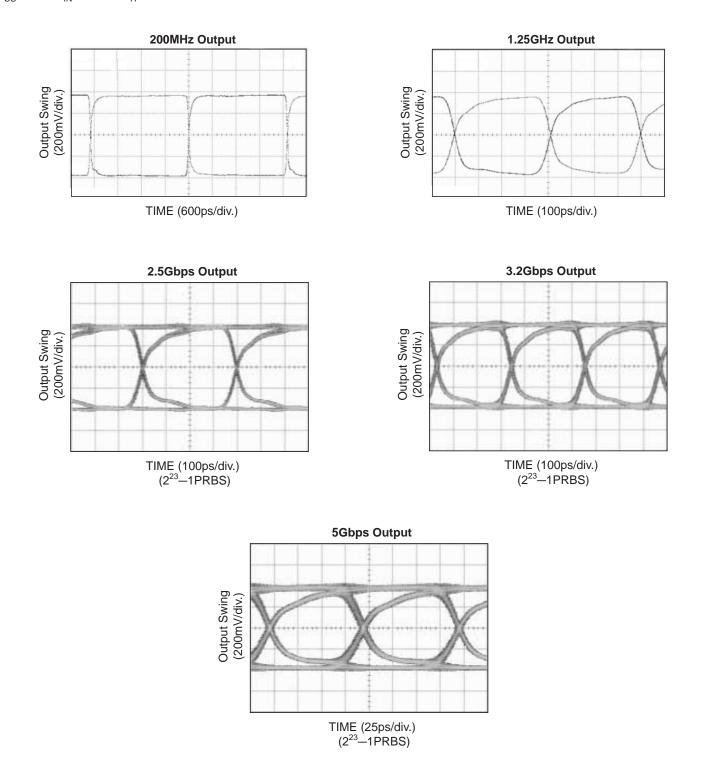

TIMING DIAGRAMS

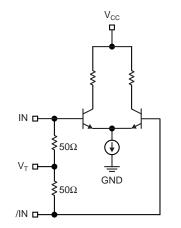




TYPICAL OPERATING CHARACTERISTICS

 V_{CC} = 3.3V, V_{IN} = 100mV, T_A = 25°C, unless otherwise stated.





TYPICAL OPERATING CHARACTERISTICS

 V_{CC} = 3.3V, V_{IN} = 100mV, T_A = 25°C, unless otherwise stated.

INPUT AND OUTPUT STAGES

INPUT INTERFACE APPLICATIONS

$V_{\rm CC}$ /Q Q

Figure 2b. Simplified LVPECL Output Stage

IN

/IN

V_T

SY58018U

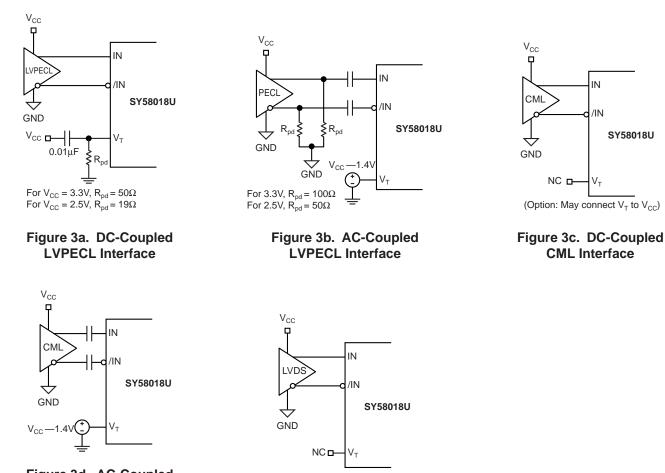
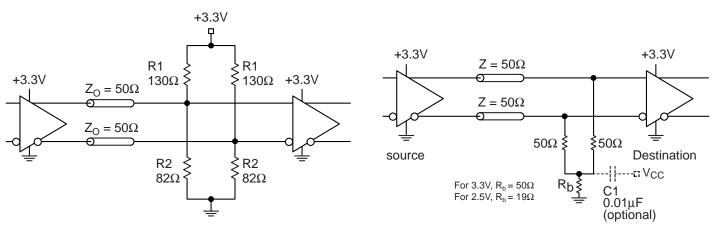



Figure 3d. AC-Coupled **CML** Interface

Figure 3e. LVDS Interface

OUTPUT INTERFACE APPLICATIONS

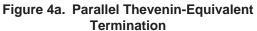


Figure 4b. Three-Resistor "Y" Termination

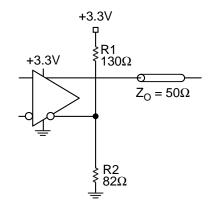
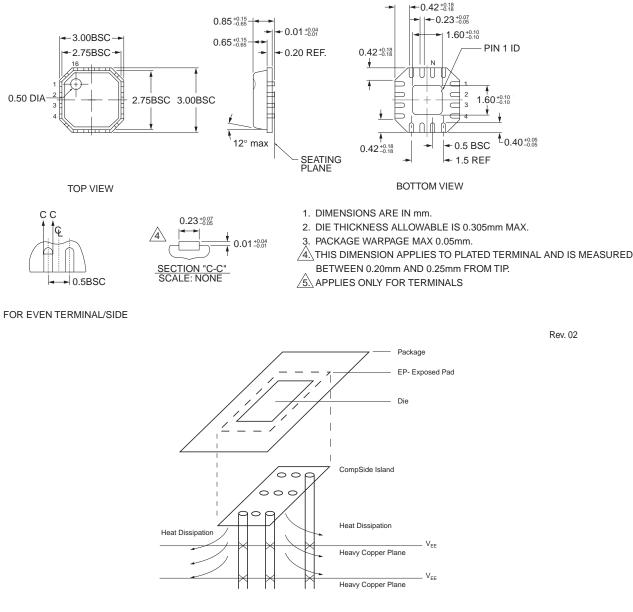



Figure 4c. Terminating Unused I/O

RELATED MICREL PRODUCTS AND SUPPORT DOCUMENTATION

Part Number	Function	Data Sheet Link
SY58016L	3.3V 10Gbps Differential CML Line Driver/Receiver with Internal I/O Termination	http://www.micrel.com/product-info/products/sy58016l.shtml
SY58017U	Ultra Precision Differential CML 2:1 Mux with Internal I/O Termination	http://www.micrel.com/product-info/products/sy58017u.shtml
SY58019U	Ultra Precision Differential 400mV LVPECL 2:1 Mux with Internal Termination	http://www.micrel.com/product-info/products/sy58019u.shtml
SY58025U	10.7Gbps Dual 2:1 CML Mux with Internal I/O Termination	http://www.micrel.com/product-info/products/sy58025u.shtml
SY58026U	5Gbps Dual 2:1 Mux with Internal Termination	http://www.micrel.com/product-info/products/sy58026u.shtml
SY58027U	10.7Gbps Dual 2:1 400mV LVPECL Mux with Internal Termination	http://www.micrel.com/product-info/products/sy58027u.shtml
SY58051U	10.7Gbps AnyGate [®] with Internal Input and Output Termination	http://www.micrel.com/product-info/products/sy58051u.shtml
SY58052U	10Gbps Clock/Data Retimer with 50 Ω Input Termination	http://www.micrel.com/product-info/products/sy58052u.shtml
	MLF [™] Application Note	www.amkor.com/products/notes_papers/MLF_AppNote_0902.pdf
HBW Solutions	New Products and Applications	www.micrel.com/product-info/products/solutions.shtml

16 LEAD *Micro*LeadFrame[™] (MLF-16)

PCB Thermal Consideration for 16-Pin MLF[™] Package (Always solder, or equivalent, the exposed pad to the PCB)

Package Notes:

- 1. Package meets Level 2 qualification.
- 2. All parts are dry-packaged before shipment.
- 3. Exposed pads must be soldered to a ground for proper thermal management.

MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel Incorporated