

2.5V/3.3V TWO INPUT, 1GHz LVTTL/CMOS-TO-LVPECL 1:4 FANOUT BUFFER/TRANSLATOR

Precision Edge™ SY89834U

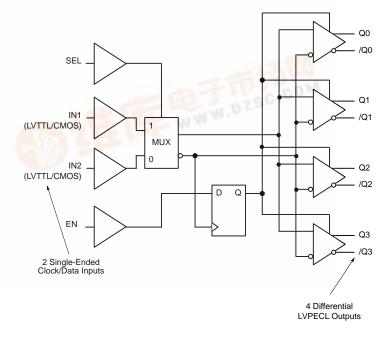
FEATURES

- Guaranteed AC performance over temperature and voltage:
 - > 1.0GHz f_{MAX}
 - < 20ps within-device skew
 - < 225ps rise/fall times
- Low jitter design:
 - Cycle-to-cycle: < 1ps (rms)
 - Total jitter: < 10ps (pk-pk)
- Low voltage 2.5V and 3.3V supply operation
- Four differential 100k LVPECL outputs
- Wide operating temperature range: -40°C to +85°C
- Includes a 2:1 MUX select input
- Accepts single-ended TTL/CMOS inputs and provides four LVPECL outputs
- Available in 16-pin (3mm × 3mm) MLFTM package

Precision Edge™

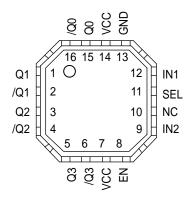
DESCRIPTION

The SY89834U is a high-speed, 2GHz LVTTL/CMOS-to-LVPECL fanout buffer/translator optimized for high-speed ultra-low skew applications. The input stage is designed to accept two single-ended LVTTL/CMOS compatible signals that feed into a 2:1 MUX. The selected input is translated and distributed as four differential 100K compatible LVPECL outputs. Within device skew is guaranteed to be less than 20ps over supply voltage and temperature.


The single-ended input buffers accept TTL/CMOS logic levels. The internal threshold of the buffers is defined as $V_{\rm CC}/2$

The SY89834U is a part of Micrel's high-speed Precision Edge™ family. For applications that require a different I/O combination, consult Micrel's website at *www.micrel.com*, and choose from a comprehensive product line of high-speed, low-skew fanout buffers, translators and clock generators.

APPLICATIONS


- Processor clock distribution/translation
- SONET clock distribution/translation
- Fibre Channel clock distribution/translation
- Gigabit Ethernet clock distribution/translation
- Single-ended ASIC-to-differential communication IC signal translation

FUNCTIONAL BLOCK DIAGRAM

PACKAGE/ORDERING INFORMATION

16-Pin MLF™

Ordering Information

Part Number	Package Type	Operating Range	Package Marking
SY89834UMI	MLF-16	Industrial	834U
SY89834UMITR*	MLF-16	Industrial	834U

^{*}Tape and Reel

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function
15, 16 1, 2, 3, 4, 5, 6	(Q0, /Q0) to (Q3, /Q3)	LVPECL Differential (Outputs): Terminate to VCC–2V. See "Termination Recommendations" section. Unused outputs may be left floating without impacting jitter and skew.
8	EN	TTL/CMOS Compatible Synchronous Enable: When EN goes LOW, Q outputs will go LOW and /Q outputs will go HIGH on the next LOW transition at IN inputs. Input threshold is $V_{CC}/2V$. Includes a $25k\Omega$ pull-up resistor. Default state is HIGH when left floating. The internal latch is clocked on the falling edge of the input signal (IN1, IN2).
9, 12	IN2, IN1	TTL/CMOS Compatible Data/Clock (Inputs): IN1 and IN2 include a $25k\Omega$ pull-up resistor. The default state is HIGH when left floating.
10	NC	No Connect. Not internally connected.
11	SEL	TTL/CMOS Compatible Select Input for signals IN1 and IN2. The input threshold is $V_{CC}/2V$. HIGH at the SEL input selects signal IN1. LOW at the SEL input selects signal IN2. SEL includes a 25k Ω pull-up resistor. The default state is HIGH when left floating.
13, Exposed Pad	GND	Ground. Exposed pad internally connected to GND and must be connected to a ground plane for proper termination.
7, 14	VCC	Positive Power Supply: Connect V _{CC} pins together on the PCB to maintain the same potential. Bypass with 0.1µF//0.01µF low ESR capacitors.

TRUTH TABLE

IN1	IN2	EN	SEL	Q0-Q3	/Q0-Q3
0	Х	1	1	0	1
1	Х	1	1	1	0
Х	0	1	0	0	1
Х	1	1	0	1	0
Х	Х	0	Х	0 ⁽¹⁾	0(1)

Note 1. On next negative transition of the input signal (IN).

Absolute Maximum Ratings(Note 1)

Operating Ratings(Note 2)

Supply Voltage Range	+2.375V to +3.63V
Ambient Temperature (T _A)	40°C to +85°C
Package Thermal Resistance	
MLF TM (θ _{JA}) Still-Air	
Still-Air	60°C/W
500lfpm	54°C/W
$MLF^{TM}(\psi_{JB})$ Junction-to-Board, Note	3 32°C/W

- Note 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.
- Note 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- Note 3. Junction-to-board resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB.

DC ELECTRICAL CHARACTERISTICS(Notes 1, 2)

 $T_A = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CC}	Power Supply Voltage Range		2.375		3.63	V
I _{CC}	Power Supply Current	No load, maximum supply voltage		50	75	mA
V _{IN}	Input Voltage Swing	see Figures 2a–2b.	0.1			
V _{DIFF_IN}	Input Differential Swing	see Figures 2a-2b.	0.2			

- Note 1. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and airflow greater than 500lfpm is maintained.
- Note 2. Specification for packaged product only.

LVTTL/CMOS INPUTS DC ELECTRICAL CHARACTERISTICS(Notes 1, 2)

 V_{CC} = 2.5V ±5% or V_{CC} = 3.3V ±10% , T_A = -40°C to +85°C

Symbol	Parameter	Condition	Min	Тур	Max	Units
V_{IH}	Input HIGH Voltage		2.0		V _{CC}	V
V_{IL}	Input LOW Voltage		0		0.8	V
I _{IH}	Input HIGH Current		-125		20	μΑ
I _{IL}	Input LOW Current				-300	μΑ

- Note 1. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
- Note 2. Specification for packaged product only.

(100KEP) LVPECL OUTPUTS DC ELECTRICAL CHARACTERISTICS(Notes 1, 2)

 V_{CC} = 2.5V ±5% or V_{CC} = 3.3V ±10% , T_A = -40°C to +85°C

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage	$R_L = 50\Omega$ to V_{CC} –2V	V _{CC} -1.145	V _{CC} -1.020	V _{CC} -0.895	V
V _{OL}	Output LOW Voltage	$R_L = 50\Omega$ to V_{CC} –2V	V _{CC} -1.945	V _{CC} -1.820	V _{CC} -1.695	V
V _{OUT}	Output Voltage Swing	see Figures 2a-2b.	550	800	1050	mV
V _{DIFF_OUT}	Differential Output Voltage Swing	see Figures 2a–2b.	1100	1600	2100	mV

- Note 1. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
- Note 2. Specification for packaged product only.

AC ELECTRICAL CHARACTERISTICS(Notes 1, 2)

 $V_{CC} = 2.5V \pm 5\%$ or $3.3V \pm 10\%$, $T_A = -40$ °C to +85°C

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{MAX}	Maximum Frequency	Input $t_r / t_f \ge 350 ps$, Note 2	1.0			GHz
t _{PLH}	Propagation Delay (IN1, IN2-to-Q)	Note 4	200	320	500	ps
t _{SW}	Switchover Time (SEL-to-Q)		200	320	500	ps
t _{SKEW}	Within-Device Skew	Note 5		5	20	ps
	Part-to-Part Skew				300	ps
t _{JITTER}	Cycle-to-Cycle Jitter Total Jitter	Note 6 Note 7			1	ps(rms) ps(pk-pk)
DC	Duty Cycle	Input $t_r/t_f \ge 350$ ps, Note 8	45	50	55	%
t_S	Set-Up Time (EN to IN1, IN2)	Note 9 and Note 10	300			ps
t _H	Hold Time (EN to IN1, IN2)	Note 9 and Note 10	500			ps
t _r , t _f	Output Rise/Fall Times (20% to 80%)		70	140	225	ps

- **Note 1.** Measured with a 2.0V input signal, 50% duty cycle, all PECL loading with 50Ω to V_{CC} -2V. Output swing is \geq 400mV.
- Note 2. Specification for packaged product only.
- Note 3. f_{MAX} is defined as the maximum input frequency while enduring a valid output. f_{MAX} is limited by the input stage.
- Note 4. $V_{IH} = 2.0V$, $V_{IL} = 0.8V$, 50% duty cycle. Delay measured at 100MHz from the crossing of the input signal with $V_{CC}/2$ as the crossing of the differential output signal. See Figure 1.
- Note 5. Skew is measured between outputs under identical transitions.
- Note 6. Cycle-to-cycle jitter definition: The variation period between adjacent cycles over a random sample of adjacent cycle pairs. $T_{JITTER\ CC} = T_n T_{n+1}$, where T is the time between rising edges of the output signal.
- Note 7. Total jitter definition: with an ideal clock input frequency of ≤ f_{MAX} (device), no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value.
- **Note 8.** If t_r/t_f is less than 350ps, the duty cycle distortion will increase beyond the duty cycle limits.
- **Note 9.** Set-up and hold times apply to synchronous applications that intend to enable/disable before the next clock cycle. For asynchronous applications set-up and hold times do not apply.
- Note 10. See "Timing Diagrams," Figure 1a.

TIMING DIAGRAMS

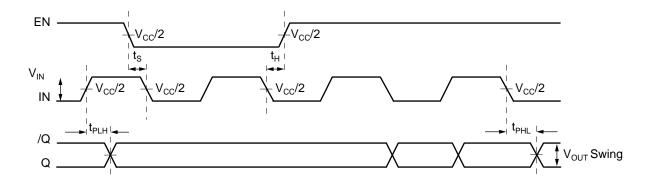


Figure 1a. Timing Diagram (EN, IN1, IN2)

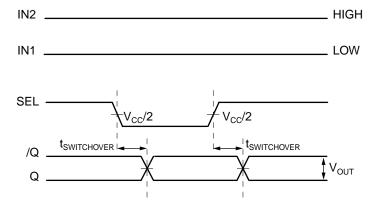
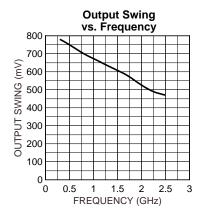
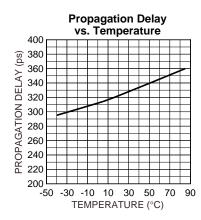
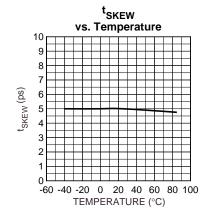


Figure 1b. Timing Diagram (SEL)

DEFINITION OF SINGLE-ENDED AND DIFFERENTIAL SWING

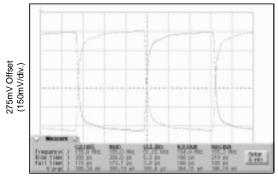



Figure 2a. Single-Ended Swing

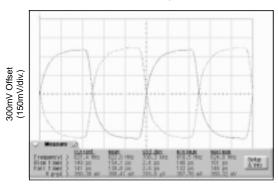

Figure 2b. Differential Swing

TYPICAL OPERATING CHARACTERISTICS

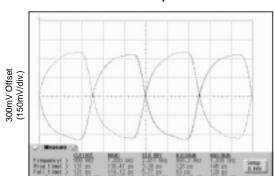
 V_{CC} = 3.3V, T_A = 25°C, V_{IN} = 2.0V, unless otherwise stated.



FUNCTIONAL CHARACTERISTICS


 $\rm V_{CC}$ = 3.3V, $\rm V_{EE}$ = 0V, $\rm V_{IN}$ = 800mV, $\rm T_A$ = 25°C, unless otherwise stated.

155MHz Output


TIME (1ns/div.)

622MHz Output

TIME (321.9ps/div.)

1GHz Output

TIME (200ps/div.)

DIFFERENTIAL INPUT

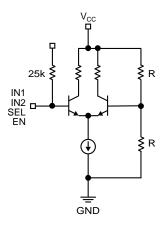


Figure 3. Simplified TTL/CMOS Input Buffer

RELATED PRODUCTS AND SUPPORT DOCUMENTATION

Part Number	Function	Data Sheet Link
SY89830U	2.5V/3.3V/5V 2.5GHz 1:4 PECL/ECL Clock Driver with 2:1 Differential Input Mux	http://www.micrel.com/product-info/products/sy89830u.shtml
SY89831U	2GHz Ultra Low-Jitter and Skew 1:4 LVPECL Fanout Buffer/Translator w/ Internal Termination	http://www.micrel.com/product-info/products/sy89831u.shtml
SY89832U	2GHz Ultra Low-Jitter and Skew 1:4 LVPECL Fanout Buffer/Translator w/ Internal Termination	http://www.micrel.com/product-info/products/sy89832u.shtml
SY89833U	2GHz Any Differential INPUT-to-LVDS Out 1:4 Fanout Buffer Translator w/ Internal Termination	http://www.micrel.com/product-info/products/sy89833u.shtml
	16-MLF™ Manufacturing Guidelines Exposed Pad Application Note	http://www.amkor.com/products/notes-papers/ MLF-appnote-0301.pdf
HBW Solutions	New Products + Termination App Note	http://www.micrel.com/product-info/as/solutions.shtml

TERMINATION RECOMMENDATIONS

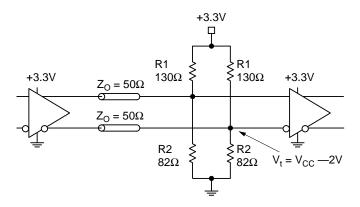


Figure 4a. Parallel Termination-Thevenin Equivalent

Note 1. For +2.5V systems: R1 = 250 Ω , R2 = 62.5 Ω For +3.3V systems: R1 = 130 Ω , R2 = 82 Ω

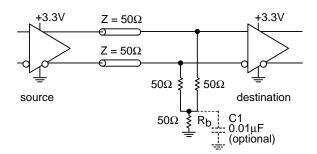
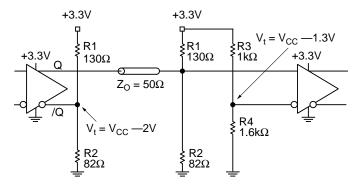
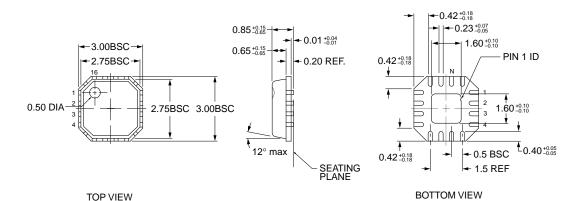
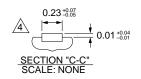


Figure 4b. Three-Resistor "Y-Termination"

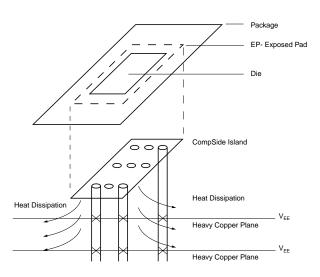
- **Note 1.** Power-saving alternative to Thevenin termination.
- Note 2. Place termination resistors as close to destination inputs as possible.
- **Note 3.** R_b resistor sets the DC bias voltage, equal to V_t . For +3.3V systems R_b = 50Ω . For +2.5V systems R_b = 39Ω .


Figure 4c. Terminating Unused LVPECL I/O

- Note 1. Unused output (/Q) must be terminated to balance the output.
- Note 2. For +2.5V systems: R1 = 250Ω , R2 = 62.5Ω , R3 = $1.25k\Omega$, R4 = $1.2k\Omega$.
- Note 3. Unused output pairs (Q and /Q) may be left floating.

16 LEAD EPAD *Micro*LeadFrame™ (MLF-16)



- 1. DIMENSIONS ARE IN mm.
- 2. DIE THICKNESS ALLOWABLE IS 0.305mm MAX.
- 3. PACKAGE WARPAGE MAX 0.05mm.
- A. THIS DIMENSION APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20mm AND 0.25mm FROM TIP.
- 5. APPLIES ONLY FOR TERMINALS

FOR EVEN TERMINAL/SIDE

Rev. 02

PCB Thermal Consideration for 16-Pin MLF™ Package (Always solder, or equivalent, the exposed pad to the PCB.)

Package Notes:

- Note 1. Package meets Level 2 moisture sensitivity classification, and are shipped in dry-pack form.
- Note 2. Exposed pads must be soldered to a ground for proper thermal management.

MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.