T2117

Zero－Voltage Switch with Adjustable Ramp

Description

The integrated circuit， T 2117 ，is designed as a zero－ voltage switch in bipolar technology．It is used to control resistive loads at mains by a triac in zero－crossing mode．

Features

－Direct supply from the mains
－Current consumption $\leq 0.5 \mathrm{~mA}$
－Very few external components
－Full－wave drive－no DC current component in the load circuit
－Negative output current pulse typ． 100 mA － short－circuit protected

A ramp generator allows power control function by period group control，whereas full－wave logic guarantees that full mains cycles are used for load switching．
－Simple power control
－Ramp generator
－Reference voltage

Applications

－Full－wave power control
－Temperature regulation
－Power blinking switch

Block Diagram

Figure 1．Block diagram with typical circuit，period group control 0 to 100%

Ordering Information

Extended Type Number	Package	Remarks
T2117－3AS	DIP8	Tube
T2117－TAS	SO8	Tube
T2117－TAQ	SO8	Taped and reeled

Pin Description

Figure 2. Pinning

Pin	Symbol	Function
1	Ramp	Ramp output
2	C $_{\text {Ramp }}$	Ramp capacitor
3	POSIN	Non-inverting comparator input
4	NEGIN	Inverting comparator input
5	V $_{S}$	Supply voltage
6	Output	Trigger pulse output
7	GND	Ground
8	V $_{\text {sync }}$	Voltage synchronization

General Description

The integrated circuit T2117 is a triac controller for zerocrossing mode. It is designed to control power in switching resistive loads of mains supplies.

Information regarding supply sync. is provided at Pin 8 via resistor $\mathrm{R}_{\text {Sync }}$. To avoid DC load on the mains, the fullwave logic guarantees that complete mains cycles are used for load switching.

A fire pulse is released when the inverting input of the comparator is negative ($\operatorname{Pin} 4$) with respect to the noninverting input (Pin 3) and internal reference voltage. A ramp generator with free selectable duration can be performed by capacitor C_{2} at Pin 2. The ramp function is used for open-loop control (figure 4), but also for application with proportional band regulation (figure 11). Ramp voltage available at capacitor C_{2} is decoupled across the emitter follower at Pin 1. To maintain the lamp flicker specification, ramp duration is adjusted according to the controlling load. In practice, interference should be avoided (temperature control). Therefore, a two-point control is preferred to proportional control. One can use internal reference voltage for simple applications. In that case, Pin 3 is inactive and connected to Pin 7 (GND), see figure 13 .

Figure 3. Pin 1 internal network

Figure 4. Threshold voltage of the ramp at $\mathrm{V}_{\mathrm{S}}=-8.8 \mathrm{~V}$

Triac Firing Current (Pulse)

This depends on the triac requirement. It can be limited with gate series resistance which is calculated as follows:

$$
\begin{gathered}
\mathrm{R}_{\mathrm{Gmax}} \approx \frac{7.5 \mathrm{~V}-\mathrm{V}_{\text {Gmax }}}{\mathrm{I}_{\mathrm{Gmax}}}-36 \Omega \\
\mathrm{I}_{\mathrm{P}}=\frac{\mathrm{I}_{\mathrm{Gmax}}}{\mathrm{~T}} \times \mathrm{t}_{\mathrm{p}}
\end{gathered}
$$

where:
$\mathrm{V}_{\mathrm{G}} \quad=$ Gate voltage
$\mathrm{I}_{\mathrm{Gmax}}=$ Maximum gate current
$\mathrm{I}_{\mathrm{p}} \quad=$ Average gate current
$\mathrm{t}_{\mathrm{p}} \quad=$ Firing pulse width
$\mathrm{T}=$ Mains period duration

Firing Pulse Width $\mathbf{t}_{\mathbf{p}}$ (Figure 5)

This depends on the latching current of the triac and its load current. The firing pulse width is determined by the zero-crossing detection which can be influenced with the help of sync. resistance, $R_{\text {sync }}$, (figure 6).

$$
t_{\mathrm{p}}=\frac{2}{\omega} \operatorname{arc} \sin \left(\frac{\mathrm{I}_{\mathrm{L}} \times \mathrm{V}_{\mathrm{M}}}{\mathrm{P} \sqrt{2}}\right)
$$

whereby:
$\mathrm{I}_{\mathrm{L}} \quad=\quad$ Latching current of the triac
$\mathrm{V}_{\mathrm{M}}=$ Mains supply, effective
$\mathrm{P} \quad=\quad$ Power load (user's power)
Total current consumption is influenced by the firing pulse width which can be calculated as follows:

$$
\mathrm{R}_{\mathrm{sync}}=\frac{\mathrm{V}_{\mathrm{M}} \sqrt{2} \sin \left(\omega \times \frac{\mathrm{t}_{\mathrm{p}}}{2}\right)-0.6 \mathrm{~V}}{3.5 \times 10^{-5} \mathrm{~A}}-49 \mathrm{k} \Omega
$$

Figure 5. Output pulse width

Figure 6. Synchronization resistance

Supply Voltage

The T2117 contains voltage limiting and can be connected with the mains supply via the diode D_{1} and the resistor R_{1}. Supply voltage between Pin 5 and 7 is limited to a typical value of 9.5 V .

The series resistance R_{1} can be calculated (figures 7 and 8) as follows:

$$
\mathrm{R}_{1 \max }=0.85 \frac{\mathrm{~V}_{\mathrm{M} \min -} \mathrm{V}_{\mathrm{Smax}}}{2 \mathrm{I}_{\mathrm{tot}}} ; \mathrm{P}_{(\mathrm{R} 1)}=\frac{\left(\mathrm{V}_{\mathrm{M}-} \mathrm{V}_{\mathrm{S}}\right)^{2}}{2 \mathrm{R}_{1}}
$$

$\mathrm{I}_{\text {tot }} \quad=\mathrm{I}_{\mathrm{S}}+\mathrm{I}_{\mathrm{P}}+\mathrm{I}_{\mathrm{x}}$
whereby:
$\mathrm{V}_{\mathrm{M}}=$ Mains voltage
$\mathrm{V}_{\mathrm{S}} \quad=$ Limiting voltage of the IC
$\mathrm{I}_{\text {tot }}=$ Total current consumption
IS = Current requirement of the IC (without load)
$\mathrm{I}_{\mathrm{X}} \quad=$ Current requirement of other peripheral components
$P_{(R 1)}=$ Power dissipation at R_{1}

Figure 7. Maximum resistance of R_{1}

Figure 8. Power dissipation of R_{1} according to current consumption

Absolute Maximum Ratings

Parameter		Symbol	Value	Unit
Supply current	Pin 5	$-_{\text {S }}$	30	mA
Sync. current	Pin 8	$\mathrm{I}_{\text {Sync. }}$	5	mA
Output current ramp generator	Pin 1	IO	3	mA
Input voltages	Pin 1, 3, 4, 6 Pin 2 Pin 8	$\begin{aligned} & -\mathrm{V}_{\mathrm{I}} \\ & -\mathrm{V}_{\mathrm{I}} \\ & \pm \mathrm{V}_{\mathrm{I}} \end{aligned}$	$\begin{gathered} \leq \mathrm{V}_{\mathrm{S}} \\ 2 \text { to } \mathrm{V}_{\mathrm{S}} \\ \leq 7.3 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Power dissipation $\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=45^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{amb}}=100^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \mathrm{P}_{\text {tot }} \\ & \mathrm{P}_{\text {tot }} \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 125 \end{aligned}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
Junction temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature range		$\mathrm{T}_{\mathrm{amb}}$	0 to 100	${ }^{\circ} \mathrm{C}$
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

Thermal Resistance

	Parameter	Symbol	Value	Unit
Junction ambient	SO8	$\mathrm{R}_{\text {thJA }}$	200	K/W
Junction ambient	DIP8	$\mathrm{R}_{\text {thJA }}$	110	K/W

Electrical Characteristics

$-\mathrm{V}_{\mathrm{S}}=8.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, reference point Pin 7, unless otherwise specified

Parameter	Test Conditions / Pins		Symbol	Min.	Typ.	Max.	Unit
Supply-voltage limitation	$\begin{aligned} & -\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & -\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { Pin } 5 \\ & \text { Pin } 5 \end{aligned}$	$\begin{aligned} & -\mathrm{V}_{\mathrm{S}} \\ & -\mathrm{V}_{\mathrm{S}} \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.1 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.6 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Supply current		Pin 5	I_{S}			500	$\mu \mathrm{A}$
Voltage limitation	$\mathrm{I}_{8}= \pm 1 \mathrm{~mA}$	Pin 8	$\pm \mathrm{V}_{\mathrm{I}}$	7.7	8.2	8.7	V
Synchronization current		Pin 8	$\pm \mathrm{I}_{\text {sync }}$	0.12			mA
Zero detector		Pin 8	$\pm \mathrm{I}_{\text {sync }}$		35		$\mu \mathrm{A}$
Output pulse width	$\begin{aligned} & \mathrm{V}_{\mathrm{M}}=230 \mathrm{~V} \sim \\ & \mathrm{R}_{\text {sync }}=220 \mathrm{k} \Omega \\ & \mathrm{R}_{\text {sync }}=470 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Pin } 6 \\ & \text { Pin } 6 \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{p}} \\ & \mathrm{t}_{\mathrm{P}} \\ & \hline \end{aligned}$		$\begin{aligned} & 260 \\ & 460 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Output pulse current	$\mathrm{V}_{6}=0 \mathrm{~V}$	Pin 6	$-\mathrm{I}_{\mathrm{O}}$	100			mA
Comparator							
Input offset voltage		Pin 3,4	$\pm \mathrm{V}_{\mathrm{I} 0}$			15	mV
Input bias current		Pin 4	$\mathrm{I}_{\text {IB }}$			1	$\mu \mathrm{A}$
Common-mode input voltage		Pin 3,4	$-\mathrm{V}_{\text {IC }}$	1		$\left(\mathrm{V}_{\mathrm{S}}-1\right)$	V
Threshold internal reference	$\mathrm{V}_{3}=0 \mathrm{~V}$	Pin 4	- $\mathrm{V}_{\text {Ref }}$		1.4		V

Electrical Characteristics (continued)

$-\mathrm{V}_{\mathrm{S}}=8.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, reference point Pin 7, unless otherwise specified

Parameter	Test Conditions / Pins	Symbol	Min.	Typ.	Max.	Unit
Ramp generator, figure 1						
Period	$\begin{aligned} & -\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{i}_{\text {sync }}=1 \mathrm{~mA}, \\ & \mathrm{C}_{1}=100 \mu \mathrm{~F}, \mathrm{C}_{2}=2.2 \mu \mathrm{~F}, \\ & \mathrm{R}_{4}=100 \mathrm{k} \Omega \quad \text { Pin } 1 \end{aligned}$	T		1.5		s
Final voltage	Pin 1	- V_{1}	1.2	1.6	2.0	V
Initial voltage	Pin 1	$-\mathrm{V}_{1}$	7.2	7.6	8.0	V
Charge current	$\mathrm{V}_{2}=-\mathrm{V}_{\mathrm{S}}, \mathrm{I}_{8}=-1 \mathrm{~mA}$, Pin 2	$-\mathrm{I}_{2}$	14	20	26	$\mu \mathrm{A}$

Applications

Figure 9. Power blinking switch with $\mathrm{f} \approx 2.7 \mathrm{~Hz}$, duty cycle $1: 1$, power range 0.5 to 2.2 kW

T2117

Figure 10. Power switch

Figure 11. Temperature control 15 to $35^{\circ} \mathrm{C}$ with sensor monitoring
NTC-Sensor M 87 Fabr. Siemens

$$
\begin{aligned}
\mathrm{R}(\mathbf{2 5})=100 \mathrm{k} \Omega / \mathrm{B}=3988 \Rightarrow \begin{array}{l}
\mathrm{R}_{(15)}=159 \mathrm{k} \Omega \\
\mathrm{R}(35)=64.5 \mathrm{k} \Omega
\end{array} \quad \mathrm{R}_{5}{ }^{1)} \text { determines the proportional range }
\end{aligned}
$$

T2117

Figure 12. Room temperature control with definite reduction (remote control) for a temperature range of 5 to $30^{\circ} \mathrm{C}$

Figure 13. Two-point temperature control for a temperature range of 15 to $30^{\circ} \mathrm{C}$

Figure 14. Two-point temperature control for a temperature range of 18 to $32^{\circ} \mathrm{C}$ and a hysteresis of $\pm 0.5^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$

T2117

Package Information
Package DIP8
Dimensions in mm

Package SO8
Dimensions in mm

Ozone Depleting Substances Policy Statement

It is the policy of Atmel Germany GmbH to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Atmel products for any unintended or unauthorized application, the buyer shall indemnify Atmel against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Data sheets can also be retrieved from the Internet: http://www.atmel-wm.com
2.

Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 672423

