DATA SHEET

For a complete data sheet，please also download：
－The IC06 74HC／HCT／HCU／HCMOS Logic Family Specifications
－The IC06 74HC／HCT／HCU／HCMOS Logic Package Information
－The IC06 74HC／HCT／HCU／HCMOS Logic Package Outlines

74HC／HCT534
 Octal D－type flip－flop；positive edge－trigger；3－state；inverting

Product specification
Supersedes data of September 1993
File under Integrated Circuits，IC06

PHILIPS

Octal D-type flip-flop; positive edge-trigger; 3-state; inverting

74HC/HCT534

FEATURES

- 3-state inverting outputs for bus oriented applications
- 8-bit positive, edge-triggered register
- Common 3-state output enable input
- Output capability: bus driver
- Icc category: MSI.

GENERAL DESCRIPTION

The 74HC/HCT534 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT534 are octal D-type flip-flops featuring separate D-type inputs for each flip-flop and inverting 3 -state outputs for bus oriented applications. A clock (CP) and an output enable ($\overline{\mathrm{OE})}$ input are common to all flip-flops.

The 8 flip-flops will store the state of their individual D-inputs that meet the set-up and hold times requirements on the LOW-to-HIGH CP transition. When $\overline{\mathrm{OE}}$ is LOW, the contents of the 8 flip-flops are available at the outputs. When $\overline{\mathrm{OE}}$ is HIGH, the outputs go to the high impedance OFF-state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.

The " 534 " is functionally identical to the " 374 ", but has inverted outputs.

QUICK REFERENCE DATA

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP to $\overline{\mathrm{Q}}_{\mathrm{n}}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	12	13	ns
$\mathrm{f}_{\text {max }}$	maximum clock frequency		61	40	MHz
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per flip-flop	notes 1 and 2	19	19	pF

Notes

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz .
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz .
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs.
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF .
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}; for HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
74 HC 534	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1
74 HC 534	DIP20	plastic dual in-line package; 20 leads (300 mil)	SOT146-1
74 HCT534	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1
74 HCT534	DIP20	plastic dual in-line package; 20 leads (300 mil)	SOT146-1

Octal D-type flip-flop; positive edge-trigger;

 3-state; inverting
PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	$\overline{\mathrm{OE}}$	3-state output enable input (active LOW)
$2,5,6,9,12,15,16,19$	$\overline{\mathrm{Q}}_{0}$ to $\overline{\mathrm{Q}}_{7}$	3-state outputs
$3,4,7,8,13,14,17,18$	D_{0} to D_{7}	data inputs
10	GND	ground (0 V)
11	CP	clock input (LOW-to-HIGH, edge-triggered)
20	Vositive supply voltage	

Fig. 1 Pin configuration.

Fig. 2 Logic symbol.

Fig. 3 IEC logic symbol.

Octal D-type flip-flop; positive edge-trigger; 3-state; inverting

Fig. 4 Functional diagram.

FUNCTION TABLE

OPERATING MODES	INPUTS			INTERNAL FLIP-FLOPS	$\begin{gathered} \hline \text { OUTPUTS } \\ \hline \bar{Q}_{0} \text { to } \bar{Q}_{7} \end{gathered}$
	$\overline{\mathrm{OE}}$	CP	D_{n}		
load and read register	L	\uparrow	I	L	H
	L	\uparrow	h	H	L
load register and disable outputs	H	\uparrow	I	L	Z
	H	\uparrow	h	H	Z

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level; $\mathrm{h}=\mathrm{HIGH}$ voltage level one set-up time prior to the LOW-to-HIGH CP transition L = LOW voltage level; I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition Z = high impedance OFF-state; $\uparrow=$ LOW-to-HIGH clock transition.

Octal D-type flip-flop; positive edge-trigger; 3-state; inverting

Fig. 5 Logic diagram.

Octal D-type flip-flop; positive edge-trigger;

3-state; inverting
74HC/HCT534

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: bus driver I_{CC} category: MSI.

AC CHARACTERISTICS FOR 74HC

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HC								$V_{\text {Cc }}$ (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n C P$ to $n \bar{Q}_{n}$		$\begin{aligned} & 41 \\ & 15 \\ & 12 \end{aligned}$	$\begin{array}{\|l\|} \hline 165 \\ 33 \\ 28 \end{array}$		$\begin{array}{\|l\|} \hline 205 \\ 41 \\ 35 \end{array}$		$\begin{array}{\|l\|} \hline 250 \\ 50 \\ 43 \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\overline{\mathrm{OE}}$ to \bar{Q}_{n}		$\begin{aligned} & 33 \\ & 12 \\ & 10 \end{aligned}$	$\begin{array}{\|l\|} \hline 150 \\ 30 \\ 26 \end{array}$		$\begin{array}{\|l\|} \hline 190 \\ 38 \\ 33 \end{array}$		$\begin{array}{\|l\|} \hline 225 \\ 45 \\ 38 \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 7
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable time $\overline{\mathrm{OE}} \text { to } \overline{\mathrm{Q}}_{n}$		$\begin{aligned} & 41 \\ & 15 \\ & 12 \end{aligned}$	$\begin{array}{\|l\|} \hline 150 \\ 30 \\ 26 \end{array}$		$\begin{array}{\|l\|} \hline 190 \\ 38 \\ 33 \end{array}$		$\begin{array}{\|l\|} \hline 225 \\ 45 \\ 38 \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 7
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		$\begin{array}{\|l} 14 \\ 5 \\ 4 \end{array}$	$\begin{aligned} & 60 \\ & 12 \\ & 10 \end{aligned}$		$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{array}{\|l} 90 \\ 18 \\ 15 \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6
tw	clock pulse width HIGH or LOW	$\begin{aligned} & \hline 80 \\ & 16 \\ & 14 \end{aligned}$	$\begin{array}{\|l\|} \hline 19 \\ 7 \\ 6 \end{array}$		$\begin{array}{\|l\|} \hline 100 \\ 20 \\ 17 \end{array}$		$\begin{array}{\|l\|} \hline 120 \\ 24 \\ 20 \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 6
t_{su}	$\begin{aligned} & \text { set-up time } \\ & D_{n} \text { to } C P \end{aligned}$	$\begin{aligned} & 60 \\ & 12 \\ & 10 \end{aligned}$	$\begin{array}{\|l\|} \hline 6 \\ 2 \\ 2 \end{array}$		$\begin{array}{\|l\|} \hline 75 \\ 15 \\ 13 \end{array}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \end{aligned}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 8
th	$\begin{aligned} & \text { hold time } \\ & D_{n} \text { to CP } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{\|l} -3 \\ -1 \\ -1 \end{array}$		$\begin{array}{\|l\|} \hline 5 \\ 5 \\ 5 \end{array}$		$\begin{array}{\|l} 5 \\ 5 \\ 5 \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 8
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency	$\begin{array}{\|l\|} \hline 6.0 \\ 30 \\ 35 \end{array}$	$\begin{aligned} & \hline 18 \\ & 55 \\ & 66 \end{aligned}$		$\begin{aligned} & 4.8 \\ & 24 \\ & 28 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 20 \\ & 24 \end{aligned}$		MHz	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 6

Octal D-type flip-flop; positive edge-trigger;

 3-state; inverting
DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see chapter "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: bus driver I_{CC} category: MSI.

Note to HCT types

The value of additional quiescent supply current $\left(\Delta I_{C C}\right)$ for a unit load of 1 is given in the family specifications. To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

	INPUT
$\overline{\mathrm{OE}}$	UNIT LOAD COEFFICIENT
CP	1.25
D_{n}	0.90

AC CHARACTERISTICS FOR 74HCT

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HCT								$V_{c c}$ (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP to \bar{Q}_{n}		16	30		38		45	ns	4.5	Fig. 6
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\overline{\mathrm{OE}}$ to $\overline{\mathrm{Q}}_{\mathrm{n}}$		16	30		38		45	ns	4.5	Fig. 7
$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PLZ }}$	3-state output disable time $\overline{\mathrm{OE}}$ to \bar{Q}_{n}		18	30		38		45	ns	4.5	Fig. 7
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLL }}$	output transition time		5	12		15		18	ns	4.5	Fig. 6
tw	clock pulse width HIGH or LOW	23	14		29		35		ns	4.5	Fig. 6
t_{su}	$\begin{aligned} & \text { set-up time } \\ & D_{n} \text { to } C P \end{aligned}$	12	4		15		18		ns	4.5	Fig. 8
th	$\begin{array}{\|l\|} \hline \text { hold time } \\ D_{n} \text { to } \mathrm{CP} \\ \hline \end{array}$	5	-1		5		5		ns	4.5	Fig. 8
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency	22	36		18		15		MHz	4.5	Fig. 6

Octal D-type flip-flop; positive edge-trigger; 3-state; inverting

AC WAVEFORMS

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 6 Waveforms showing the clock (CP) to output $\left(\bar{Q}_{n}\right)$ propagation delays, the clock pulse width, output transition times and the maximum clock pulse frequency.

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.
$\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 7 Waveforms showing the 3-state enable and disable times.

Octal D-type flip-flop; positive edge-trigger; 3-state; inverting

The shaded areas indicate when the input is permitted to change for predictable output performance.
(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{Cc}.
$\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .
Fig. 8 Wavetorms showing the data set-up and hold times tor D_{n} input.

Octal D-type flip-flop; positive edge-trigger; 3-state; inverting

PACKAGE OUTLINES

DIP20: plastic dual in-line package; 20 leads ($\mathbf{3 0 0}$ mil)
SOT146-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1} min.	A_{2} max.	b	b_{1}	C	$D^{(1)}$	$E^{(1)}$	e	\mathbf{e}_{1}	L	M_{E}	$\mathbf{M}_{\mathbf{H}}$	w	$\mathrm{Z}^{(1)}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 26.92 \\ & 26.54 \end{aligned}$	$\begin{aligned} & 6.40 \\ & 6.22 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.0
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.060 \\ & 1.045 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT146-1			SC603	\square ¢	$\begin{aligned} & -92-11-17 \\ & 95-05-24 \end{aligned}$

Octal D-type flip-flop; positive edge-trigger;
74HC/HCT534 3-state; inverting

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{z}^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT163-1	075E04	MS-013AC		$\square \oplus$	$\begin{aligned} & \hline 95-01-24 \\ & 97-05-22 \end{aligned}$

Octal D-type flip-flop; positive edge-trigger; 3-state; inverting

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (order code 9398652 90011).

DIP

SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{\text {stg max }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

SO

Reflow soldering

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

Octal D-type flip-flop; positive edge-trigger;
3-state; inverting

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from : www.AllDataSheet.com

100\% Free DataSheet Search Site.
Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com

