N-Channel JFET Monolithic Dual

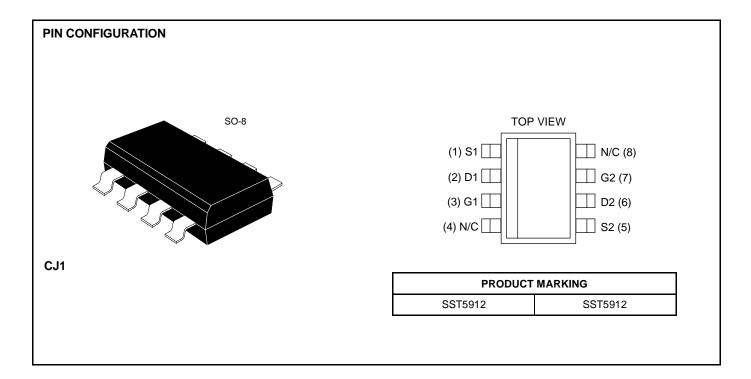
calogic CORPORATION S

SST5912

FEATURES

- High Gain g_{fs} > 6 mS
- Low Leakage I_G < 1pA typical
- Low Noise
- Surface Mount Package

APPLICATIONS


- Differential Wideband Amplifier
- VHF/UHF Amplifiers
- Test and Measurement

DESCRIPTION

The SST5912 is a High Speed N-Channel Monolithic JFET pair encapsulated in a surface mount plastic SO-8 package. The device is designed for high gain (typically > 6000 mmhos), low leakage (< 1pA typically) and low noise, The SST5912 is an excellent choice for differential wideband amplifiers, VHF/UHF amplifiers and test and measurement.

ORDERING INFORMATION

Part	Package	Temperature Range			
SST5912	Plastic SO-8 Package	-55°C to +150°C			
NOTE: For Sorted Chips in Carriers, See 2N5911 Series					

calogíc CORPORATION

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Parameter/Test Condition Gate-Drain Voltage		Symbol	Limit	Unit V
		V _{GD}	-25	
Gate-Source Voltage		VGS	-25	V
Forward Gate Current		lg	50	mA
Power Dissipation	(per side)	PD	300	mW
•	(total)		500	mW
Power Derating	(per side)		2.4	mW/ ^o C
0	(total)		4	mW/ °C
Operating Junction Temperature		TJ	-55 to 150	°C
Storage Temperature		T _{stg}	-65 to 150	°C
Lead Temperature (1/16" from case for 10 seconds)		TL	300	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

SYMBOL		TYP ¹	SST5912				
	CHARACTERISTCS		MIN	MAX	UNIT	TEST CONDITIONS	
STATIC		-			-		
V _{(BR)GSS}	Gate-Source Breakdown Voltage	-35	-25		V	$I_G = -1mA$, $V_{DS} = 0V$	
V _{GS(OFF})	Gate-Source Cut off Voltage	-3.5	-1	-5	v	V _{DS} = 10V, I _D = 1nA	
IDSS	Saturation Drain Current ²	15	7	40	mA	$V_{DS} = 10V, V_{GS} = 0V$	
	Gate Reverse Current	-1		-100	pА	$V_{GS} = -15V, V_{DS} = 0V$	
IGSS		-0.2			nA	$T_A = 125^{\circ}C$	
	Gate Operating Current	-1		-100	pА	V _{DG} = 10V, I _D = 5mA	
lG		-0.2			nA	$T_A = 125^{\circ}C$	
Vgs	Gate-Source Voltage	-1.5	-0.3	-4	V	V _{DG} = 10V, I _D = 5mA	
V _{GS(F)}	Gate-Source Forward Voltage	0.7			v	$I_G = 1mA$, $V_{DS} = 0V$	
DYNAMIC			•		•		
g fs	Common-Source Forward Transconductance	6	5	10	mS	$V_{DG} = 10V, I_D = 5mA$	
gos	Common-Source Output Conductance	20		100	mS	f = 1kHz	
g fs	Common-Source Forward Transconductance	6	5	10	mS	$V_{DG} = 10V$, $I_D = 5mA$ f = 100MHz	
gos	Common-Source Output Conductance	30		150	mS		
Ciss	Common-Source Input Capacitance	3.5		5	- F	$V_{DG} = 10V$, $I_D = 5mA$ f = 1MHz	
Crss	Common-Source Reverse Transfer Capacitance	1		1.2	pF		
en	Equivalent Input Noise Voltage	4		20	nV/√ Hz	$V_{DG} = 10V, I_D = 5mA, f = 10kHz$	
NF	Noise Figure	0.1		1	dB	V_{DG} = 10V, I _D = 5mA, f = 10kHz, R _G = 100W	
MATCHING					-		
Vgs1 - Vgs2	Differential Gate Source Voltage	7		15	mV	V _{DG} = 10V, I _D = 5mA	
D V _{GS1} - V _{GS2}	Gate Source Voltage Differential Change with	10		40	m\// °C	$T = -55 \text{ to } 25^{\circ}\text{C}$ $V_{DG} = 10\text{V}$	
DT	Temperature	10		40		$T = 25 \text{ to } 125^{\circ}\text{C}$ $I_{D} = 5\text{mA}$	
I _{DSS1} I _{DSS2}	Saturation Drain Current Ratio	0.98	0.95	1		$V_{DS} = 10V, V_{GS} = 0V$	
<u> </u>	Transconductance Ratio	0.98	0.95	1		V_{DG} = 10V, I_D = 5mA, f = 1kHz	
I _{G1} - I _{G2}	Differential Gate Current	0.01		20	nA	$V_{DG} = 10V, I_D = 5mA, T_A = 125^{\circ}C$	
CMRR	Common Mode Rejection Ratio	90			dB	$V_{DD} = 5$ to 10V, $I_D = 5mA$	

NOTES: 1. For design aid only, not subject to production testing. 2. Pulse test; PW = 300ms, duty cycle â 3%.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com