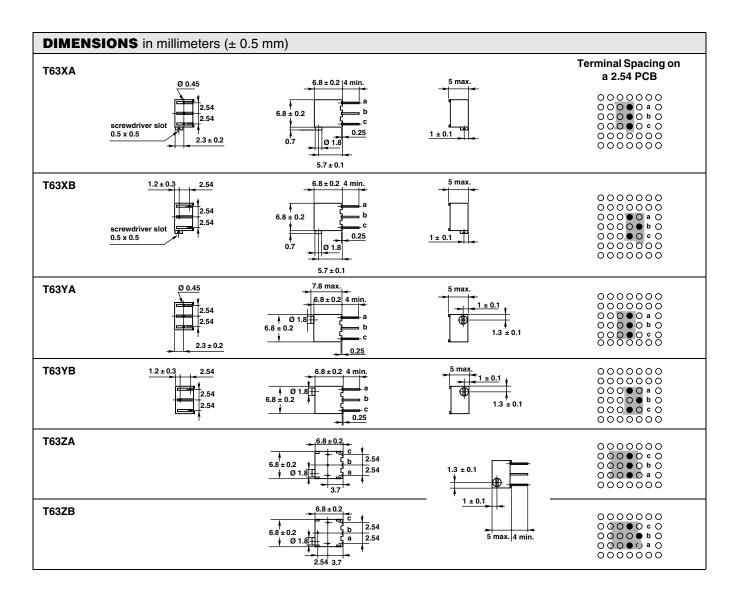


1/4" Multi-Turn Fully Sealed Container Cermet Trimmers


Due to their square shape and small size $(6.8 \times 6.8 \times 5 \text{ mm})$, the multi-turn trimmers of the T63 series are ideally suited for PCB use, enabling high density board mounting with reduced space requirement between cards.

Six versions are available differing by the top or side position of the adjustment screw and by PC pins configuration.

The use of cermet for the resistive track ensures an excellent stability of nominal specifications throughout life.

FEATURES

- 0.25 W at 70 °C
- Industrial grade
- Tests according to CECC 41 000
- Multi-turn operation
- Low contact resistance variation 1 % typical

Vishay Sfernice

1/4" Multi-Turn Fully Sealed Container Cermet Trimmers

ELECTRICAL SPECIFICATIONS						
Resistive Element	Cermet					
Electrical Travel	13 turns ± 2					
Resistance Range	10 Ω to 2.2 MΩ					
Standard Series and an Request Series E3	1 - 2 - 5 (1 - 2.2 - 4.7)					
standard	± 10 %					
Tolerance on request	± 5 %					
linear	0.25 W at + 70 °C					
Power Rating	CIRCUIT DIAGRAM $a \longrightarrow (1) \qquad b^{\circ} \rightarrow cw$ (2) (2) (2) (3) (2) (3) (2) (2) (3) (2) (3) (2) (3) (2) (3) (2) (3) (3) (2) (3) (3) (2) (3) (3) (3) (2) (3) (2) (3) (2) (3) (3) (2) (3) (3) (2) (3) (3) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (2) (3) (3) (3) (3) (3) (2) (3) (2) (3) (3) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (2) (3)					
Temperature Coefficient	see Standard Resistance Element Table					
Limiting Element Voltage (Linear Law)	250 V					
Contact Resistance Variation	2 % Rn or 2 Ω					
End Resistance (Typical)	1 Ω					
Dielectric Strength (RMS)	1000 V					
Insulation Resistance (500 VDC)	10 ⁶ MΩ					

MECHANICAL SPECIFICATIONS				
Mechanical Travel	15 turns ± 5			
Operating Torque (Max. Ncm)	1.5			
End Stop Torque	Clutch action			
Unit Weight (Max. g)	0.5			
Wiper (Actual Travel)	Positioned at approx. 50 %			

ENVIRONMENTAL SPECIFICATIONS			
Temperature Range	- 55 °C to + 155 °C		
Climatic Category	55/125/56		
Sealing	Fully sealed - Container IP67		

1/4" Multi-Turn Fully Sealed Container Cermet Trimmers

STANDARD RESISTANCE ELEMENT DATA					
STANDARD RESISTANCE VALUES		LINEAR LAW			
	MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. WIPER CUR.	TCR - 55 °C + 125 °C	
Ω	W	V	mA	ppm/°C	
10	0.25	1.58	158		
20		2.23	112		
50		3.5	77		
100		35	50		
200		7.07	35		
500		11.2	22		
1K		15.8	15.8		
2K		22.3	11.2		
5K		35.3	7.1		
10K		50	5	± 100	
20K		70.7	3.5		
25K		79	3.2		
50K		112	2.2		
100K		158	1.6		
200K	0.25	224	1.1		
250K	0.25	250	1.1		
500K	0.13	250	0.50		
1M	0.06	250	0.25		
2.2M	0.03	250	0.125		

MARKING

Printed:

- VISHAY trademark
- Model
- Style
- Ohmic value (in Ω , k Ω , M Ω)
- Tolerance (in %) only if non standard
- Manufacturing date
- Marking of terminal 3

PACKAGING

• In magazine pack (tube) by 50 pieces code TU50

Vishay Sfernice

1/4" Multi-Turn Fully Sealed Container Cermet Trimmers

PERFORMANCES						
TESTS	CONDITIONS	TYPICAL VALUES AND DRIFTS				
12515	CONDITIONS	∆ R_T/R_T (%)	∆ R₁₋₂/R₁₋₂ (%)			
Load Life	1000 h at rated power 90'/30' - ambient temp. 70 °C	± 1 % Contact res. variation: < 1 % Rn	±2%			
Climatic Sequence	Phase A dry heat 125 °C - 30 % Pr Phase B damp heat Phase C cold - 55 °C Phase D damp heat 5 cycles	± 0.5 %	±1%			
Long Term Damp Heat	56 days 40 °C, 93 % RH	\pm 0.5 % Dielectric strength: 1000 V_{RMS} Insulation resistance: > $10^4M\Omega$	±1%			
Rapid Temperature Change	5 cycles - 55 °C to + 125 °C	± 0.5 %	$\Delta V_{1\text{-}2} / \Delta V_{1\text{-}3} \leq \pm 1 \%$			
Shock	50 g at 11 ms 3 successive shocks in 3 directions	± 0.1 %	± 0.2 %			
Vibration	10 to 55 Hz 0.75 mm or 10 g during 6 h	± 0.1 %	$\Delta V_{1\text{-}2}\!/\!\Delta V_{1\text{-}3}{\leq}\pm$ 0.2 %			
Rotational Life	200 cycles	± (2 % + 3 Ω) Contact res. variation: < 1 % Rn	-			

SAP ORDERING INFORMATION (Part Number 15 digits)						
T	6 3 X	A 1 0 4	K T 2	0		
MODEL	STYLE XA XB YA YB ZA ZB	OHMIC VALUE From 10 Ω to 2.2 MΩ 104 = 100 kΩ	TOLERANCE K = 10 % on request J = 5 %	PACKAGING T20 = Tube 50 pieces	SPECIAL NUMBER (if applicable) Given by VISHAY for custom design	

PART NUMBER DESCRIPTION (for information only)						
Т63	XA	100K	10 %		TU	e3
MODEL	VERSION	VALUE	TOLERANCE	SPECIAL	PACKAGING	LEAD (Pb)-FREE

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.