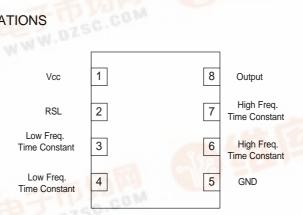
UTC TA31002 LINEAR INTEGRATED CIRCUIT

TELEPHONE TONE RINGER

DESCRIPTION


The UTC TA31002 is a bipolar integrated circuit designed for telephone bell replacement. It can also be used as alarms or other alerting devices.

FEATURES

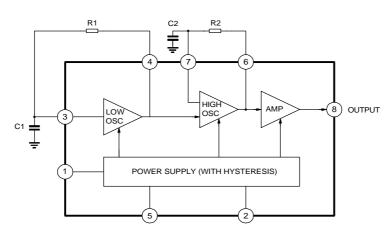
- *Current consumption is small. (at no-load)
- *Package is compaction. (DIP-8 pin)
- *Oscillation frequency is variable.
- *Built-in threshold circuits prevent false triggering due to power noise as well as "chirps" due to rotary dial.
- *Few external componens.

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER	SYMBOL	VALUE	UNIT
Power Supply Voltage	Vcc	30	V
Power Dissipation	Pd	800	mW
Operating Temperature	Topr	-40 to 85	°C
Storage Temperature	Tstg	-55 to 150	°C

UTC


UNISONIC TECHNOLOGIES CO., LTD.

QW-R108-004,A

UTCTA31002 LINEAR INTEGRATED CIRCUIT

BLOCK DIAGRAM

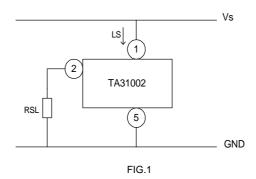
Note:R1,R2,C1 and C2 are partsexternally mounted

ELECTRICAL CHARACTERISTICS(Ta=25°C)

(All voltage referenced to GND unless otherwise specified)

(in reliage relevances to Grib sinese sineriles epecines)								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Operating Voltage	Vopr				29	V		
Initiation Supply Voltage	Vsi	(note 1)	17	19	21	V		
Sustaining Supply Voltage	Vsus	(note 2)	10.5	12	-	V		
Initiation Current Consumption	lsi	No-Load	1.4	3.3	4.2	mΑ		
Sustaining Current Consumption	Isus		0.7	1.4	2.5	mΑ		
	fL	C1=0.47 μ F,R1=165 $k\Omega$	9	10	11	Hz		
Oscillation Frequency (not3)	fH1	C2=6800pF,R2=191k Ω	461	512	563	Hz		
	fH2		576	640	703	Hz		
Output Voltage "H" Level	Voн	Vcc=24V,VOH=-10mA PIN7=GND	20.0	21.5	22.5	V		
Output Voltage "L" Level	Vol	Vcc=24V,VOL=10mA PIN7=7V	0.7	1.0	2.0	V		

*NOTE: 1. Initiation supply voltage (Vsi) is a supply voltage required to start oscillation of the tone ringer.


- Sustaining supply voltage (Vsus) is a supply voltage required to maintain oscillation of the tone ringer.
 Oscillation frequency is determined by the following equations 1,2,and 3.
- (1) fL=1/1.234•R1•C1 (Hz); (2)fH1=1/1.515•R2•C2 (Hz); (3)fH2=1.24 fH1(Hz)

UTCTA31002 LINEAR INTEGRATED CIRCUIT

APPLICATION NOTE

In the TA31002 the initiation current consumption (Isi) can be changed by using the RSL terminal. The resistor RSL is connected to GND from PIN2 as shown in fig.1. Further, the initation current consumption(Isi) can be changed by changing the value of RSL.

Fig.2 show the graph of Vs-Is characteristic at the time when RSL has been changed to three values. The Vs-Is characteristic in TA31002 at the time when RSL= $6.8k\Omega$ coincides with that at the time when PIN2 of the TA31001 has been used at an open state.

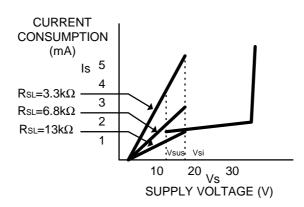
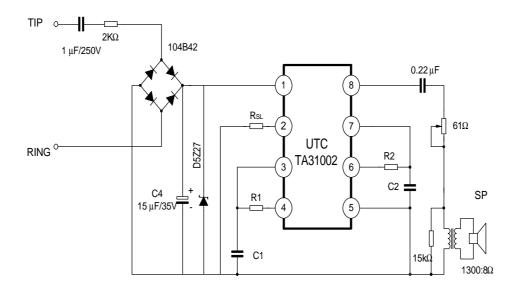



FIG.2

UTCTA31002 LINEAR INTEGRATED CIRCUIT

APPLICATION CIRCUIT

fL=1/1.234R1*C1 fH1=1/1.515R2*C2 fH2=1.24fH1

when:

R1=165KΩ R2=191KΩ C1=0.47μF/16V C2=0.0068μF/16V fL≅10Hz fH1≅500Hz fH2≅630Hz