TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC # TA8002S, TA8002AS #### **5V VOLTAGE REGULATOR WITH RESET TIMER** The TA8002S is an IC specially designed for automotive microcomputer systems. It produces an output voltage of 5 ± 0.5V without need for adjustment from its accurate reference voltage and amplifier circuit. At power-on, it outputs a reset signal to reset the system. It will also output a reset signal when the 5V output voltage drops below 92% because of external disturbance or other problem. Since it is also designed to have a small bias current, power consumption on the system can be reduced. The TA8002AS produces an output voltage of 5 ± 0.25 V. #### **FEATURES** : 5 ± 0.5V (TA8002AS : 5 ± 0.25V) Accurate output Standby output : 3.5V Low bias current : 150 μA (Typ.) Power-on reset timer Operating temperature range : from -40 to 85°C Wide operating voltage range : 40V (max.) Small SIP-7 pin f.dzsc.com #### **BLOCK DIAGRAM AND PIN LAYOUT** TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. The products described in this document are subject to foreign exchange and foreign trade control laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice. #### PIN DESCRIPTION | PIN No. | SYMBOL | DESCRIPTION | | | | | | |---------|--------|---|--|--|--|--|--| | 1 | BIAS | Power supply starting pin. The starting current is supplied through a resistor to which the input voltage is applied. The output current from this starting current is as follows : $I_{OUT} (\text{pin 1}) \geq 30 \times (V_{IN} - 0.7) / (200 + R_1) \text{ (mA)} $ where R_1 is the external resistance attached to pin 1 (k Ω). When V_{CC} rises above 2.7V, the starting current is absorbed in the internal circuit; instead, the output current OUT is supplied via V_{CC} . | | | | | | | 2 | OUT | Connected to the base of an external PNP transistor so that the output voltage is stabilized. | | | | | | | 3 | VCC | Power supply pin for internal circuit. The output voltage can also be detected at this pin. | | | | | | | 4 | GND | Grounded | | | | | | | 5 | ADJ | The output voltage can be adjusted by inserting a resistor between ADJ and GND or between ADJ and V _{CC} . Mode ADJ Pin Output Voltage V _{REG} Standby OPEN 3.5V Normal GND 5.0V | | | | | | | 6 | TC | Time setting pin for reset timer | | | | | | | 7 | RESET | NPN transistor open-collector output. This pin supplies a reset signal when the output drops below 92% of the specified level. After the output voltage increases above 92% of the specified level, the reset signal will be output for a period of time set at the TC pin. | | | | | | #### **TIMING CHART** #### **MAXIMUM RATINGS** (Ta = 25°C) | CHARACTERISTIC | SYMBOL | RATING | UNIT | |-----------------------|-------------------|-----------------|------| | Input Voltage | V _{IN} | 40 | V | | Output Current | lOUT1 | 0.5 | mA | | Output Current | IOUT2 | 1 | mA | | Output Voltage | V _{OUT1} | 40 | V | | Output voltage | V _{OUT2} | 16 | V | | Power Dissipation | PD | 500 | mW | | Operating Temperature | T _{opr} | - 40∼85 | °C | | Storage Temperature | T _{stg} | - 55∼150 | °C | | Lead Temperature-time | T _{sol} | 260 (10s) | °C | #### **ELECTRICAL CHARACTERISTICS** ($V_{IN} = 7$ to 17V, Ta = -40 to 85°C, $I_{LOAD} = 5$ mA) | | | | | | · LOAD | • | | | | |-------------------------|-------------------------|-------|----------------------|--------------------------------------|-----------|------|----------|------|-------| | CHARACTERISTIC | SYMBOL | PIN | TEST
CIR-
CUIT | TEST (| CONDITION | MIN. | TYP. | MAX. | UNIT | | Output Valtage | V | VCC | 1 | _ | TA8002S | 4.5 | 5.0 | 5.5 | V | | Output Voltage | VREG | | 1 | | TA8002AS | 4.75 | 5.0 | 5.25 | | | Line Regulation | _ | Vcc | _ | V _{IN} = 7~40V | | _ | 0.1 | 0.5 | % | | Load Regulation | _ | Vcc | _ | I _{LOAD} = 2~10mA | | _ | 0.1 | 0.5 | % | | Temperature Coefficient | _ | Vcc | _ | _ | | _ | 0.01 | _ | % /°C | | Output Voltage | VOL | RESET | 2 | I _{OL} = 300 μA | | _ | _ | 0.4 | V | | Output Leakage Current | ^I LEAK | RESET | 3 | V _{OUT} = 10V | | _ | _ | 5 | μΑ | | Input Current | IN | TC | 4 | V _{IN} = 0~V _{REG} | | -2 | _ | 2 | μΑ | | Threshold Voltage | V _{TH} | TC | 5 | TC: Low to High | | _ | 1.7 | _ | V | | Reset Detect Voltage | _ | Vcc | 5 | V _{REG} = 5V | | _ | 4.6 | _ | V | | Standby Voltage | VS | Vcc | 6 | _ | | 3.1 | 3.5 | 3.9 | V | | Standby Current | lς | Vcc | 7 | V _{IN} = 14V | | _ | 150 | 300 | μΑ | | Reset Timer | er T _{RESET} R | RESET | 5 | | | | 0.4× | | | | Neset Tillel | | ILJET | | | _ | | C_TR_T | | | #### **TYPICAL CHARACTERISTICS** 1. Input-Output Characteristic ($R_L = 500\Omega$, external transistor 2SA817A) #### 2. Reset Characteristic #### **TEST CIRCUIT** # 1. V_{REG} ## 5. V_{RESET}, V_{TH}, T_{RESET} 2. VOL (RESET) #### 3. ILEAK (RESET) 6. V_S # 4. I_{IN} (TC) 7. Is #### **EXAMPLE OF APPLICATION CIRCUIT** $I_{LOAD} = 10$ mA Max. $V_{BATT} = 6 \sim 17V$ (LOAD DUMP 120Vpeak, 200ms) 1. 5V Standard Circuit 2. Application Circuit Using Darlington Transistor - * Select a C₂ value according to the working condition -- typically above 2000pF. - 3. Backup Circuit * Use an output capacitor C₁ which has a low temperature dependence (such as a tantalum capacitor). Connect it as close to the IC as possible. ### **OUTLINE DRAWING** SIP7-P-2.54A Unit: mm Weight: 0.7g (Typ.)