TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA8132AN, TA8132AF, TA2012N, TA2012F

3V AM / FM IF + MPX (For Digital Tuning System)

TA8132AN, TA8132AF and TA2012N, TA2012F are the AM / FM IF+ST DET system ICs, which are designed for DTS radios. These are included many functions and these can be used for digital tuning system with IF counter.

Features

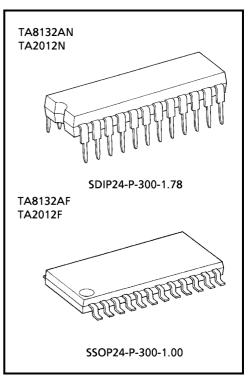
- Built-in AM / FM IF and FM stereo PLL multiplex decoder.
- Suitable for combination with digital tuning system which is included IF counter.
 - One terminal type AM / FM IF count output (auto stop signal) for IF counter of digital tuning system.

FM: 10.7MHz or 1.3375MHz (1 / 8 dividing) changeable by external switch

AM: 450kHz

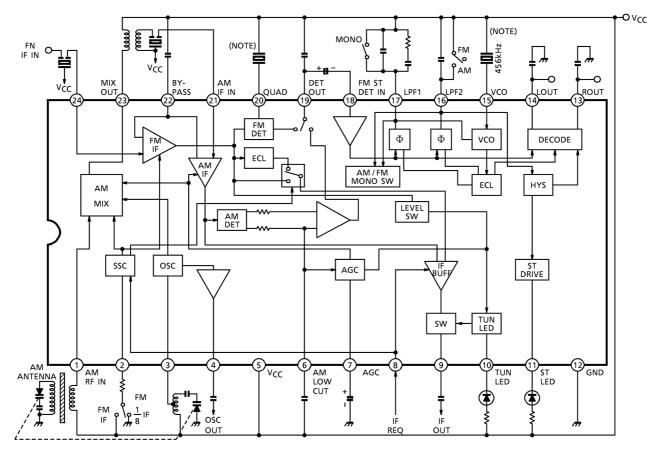
Built-in mute circuit for IF count output.
 It is controlled by the IF request signal from digital tuning system,

Pin(8) level: High \rightarrow come out Low \rightarrow non output


 $\bigcirc\,$ Adjustable for IF count output sensitivity by external resistance of pin(2).

- For adopting ceramic discriminator and ceramic resonator, it is not necessary to adjust the FM quad detector circuit and FM ST DET VCO circuit.
- S curve characteristics of FM detection output in TA8132AN, TA8132AF and TA2012N, TA2012F are reverse to each other.

TA8132AN, TA8132AF: Reverse characteristic.


TA2012N, TA2012F: Normal characteristic.

- Built-in one terminal type AM low cut circuit.
- TA2053F is reverse pin type of TA2012F.
- Operating supply voltage range (Ta = 25°C) VCC (opr.) = 1.8~8.0V

Weight SDIP24-P-300-1.78: 1.2g (typ.) SSOP24-P-300-1.00 : 0.31g (typ.)

Block Diagram

(Note)

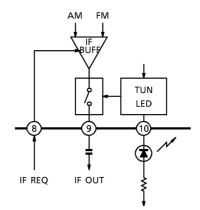
We recommend

Ceramic resonator: CSB456F18

Ceramic discriminator: CDA10.7MG18 (MURATA MFG CO., LTD)

Explanation Of Terminals

Pin	Item	Internal Circuit	DC Voli (at no s	tage (V) Signal)
No.			AM	FM
1	AM RF IN		3.0	3.0
2	 IF count output sensitivity adjust terminal FM IF divider control terminal 	V _{CC} (5)	_	_
3	AM OSC	V _{CC} (5) BUFF (3) (ALC) GND (12)	3.0	3.0
4	AM OSC OUT	V _{CC} (5) AM OSC (2) GND (12)	2.7	3.0
5	V _{CC}	-	3.0	3.0
6	AM LOW CUT	V _{CC} (5)	2.3	2.3


Pin	Item	Internal Circuit	DC Volt (at no	tage (V) Signal)
No.	lioni		AM	FM
7	AGC	V _{CC} (S) (T) (T) (T) (T) (T) (T) (T) (T) (T) (T	0.25	0.35
8	IF OUT SW	8	_	_
9	IF OUT	Vcc S C S C S S S S S S S S S S S S S S S	3.0	3.0
10	TUN LED (tuning LED)	V _{CC} (S)	Ι	_
11	ST LED (stereo LED)	19kHz GND (12	Ι	—
12	GND	_	0	0
13 14	R-OUT L-OUT	V _{CC} (5)	1.0	1.0

Pin	Item	Internal Circuit	DC Vol (at no	tage (V) Signal)
No.	nem		AM	FM
15	vco	V _{CC} (5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	2.5	2.5 (VCO stop mode)
16	LPF2 • LPF terminal for synchronous detector • Bias terminal for AM / FM switch circuit V ₁₆ = V _{CC} →AM V ₁₆ = open→FM	GND (12	3.0	2.2
17	LPF1 • LPF Terminal for phase detector • VCO stop terminal V ₁₇ = V _{CC} →VCO stop	DC AMP AMP (1) (2) (2) (2)	2.7	2.2
18	FM ST DET IN	(B) we know we we know	0.7	0.7
19	DET OUT	V _{CC} (5) AM FM GND (12)	1.1	1.1

Pin	Item	Internal Circuit	DC Volt (at no	tage (V) Signal)
No.			AM	FM
20	QUAD (FM QUAD. Detector)	V _{CC} (S)	2.4	2.1
21	AM IF IN		3.0	3.0
22	BY-PASS By-pass for AM/FM IF AMP		2.3	2.8
23	AM MIX OUT	V _{CC} (5) (3) (3) (3) (12) (3) (12) (3) (12) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	3.0	3.0
24	FM IF IN	V _{CC} (5) C C C C C C C C C C C C C	3.0	3.0

Application Note

1. How to control the IF count output signal (pin(9) output)

		TUN LED					
		ON	OFF				
V ₈	Н	Come out	Non output				
v8	L	Non output	Non output				

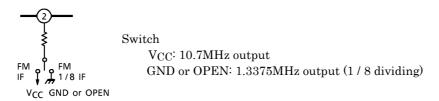
• Whether or not there is the IF count output signal (pin(9) output) is determined by the and of the pin(8) control voltage: V_8 and tuning LED on / off switching.

In the condition of

 V_8 : High (active high, $V_{TH} = 0.8V$ (typ.))

TUN LED: ON (Vin \geq VL+2dBµV EMF (typ.))

the IF count output signal comes out from the pin(9).


In the case of the tuning LED function is not needed, it doesn't matter the pin(10) is opened.

• The output impedance of pin(9) is $1.5k\Omega$ (typ.) (cf.P.4)

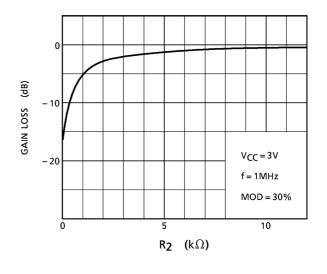
It is possible to reduce the IF count output signal level to add the resistance between the pin(9) and the V_{CC} line.

- The signal waveform is the rectangular wave, and the level is $500mV_{p-p}\ (\mbox{typ.})$

2. How to control the divider of FM IF

- 3. How to adjust the IF count output sensitivity
 - The IF count output sensitivity (search sensitivity) Can be adjusted by varying the IF AMP gain for FM and varying the MIXER gain for AM. This setting is made by changing the value of external resistance R₂ which is connected to pin(2).
 - However, this is only possible at the auto-tuning mode. (external voltage supplied to pin(8) is at high level.) The original again returns while receiving a broadcast station (supplied voltage to pin(8) is at low level.)

/cc

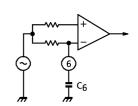

• The gain loss of FM IF AMP

		R2			0								
		0Ω	10KΩ (Note)		-	 'S IE I	I I MODE			 	+		+
Mode	IF (10.7MHz)	-20dB	-1dB	(dB)			IF M	ODE					
Мс	1 / 8 IF (1.3375MHz)	-20dB	–1dB) – 10 SSOT		\parallel							
		NIY 9 – 2	°							= 3V 0.7MF	Iz		
	(Note)											= ±22.	
	 In the co 		0	1			5			10			

possible to set up R₂ = ∞ (OPEN).
 R₂ (kΩ)
 In the condition of IF mode, it is necessary to set up the value of R₂ under 10kΩ. When the R₂ is over 10kΩ it is feared that the mode is change to the 1 / 8 IF mode.

• The gain loss of AM MIXER

R	2
0Ω	10KΩ
-16dB	-1dB

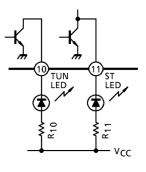


4. AM low–cut circuit

- The AM low-cut action is carried out by the bypass of the high frequency component of the positive-feedback signal at the AF AMP stage. The external capacitor: C_6 by-passes this component.
- The cut–off frequency f_L is determine by the internal resistance $22k\Omega$ (typ.) and the external capacitor C_6 as following;

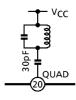
$$f_{L} = \frac{1}{2 \times \pi \times 22 \times 10^{3} \times C_{6}} (Hz)$$

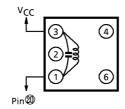
• In the case of the AM low-cut function is not needed, set up the value of C6 over $0.47\mu F$. In the condition of $C_6 \ge 0.47\mu F$, the frequency characteristic has flat response at the low frequency.



5. AM local oscillator buffer output

- The output impedance of AM local oscillator buffer output pin (pin(4)) is 750 Ω (typ.) (cf.P.3)
- It is possible to reduce the output level to add the resistance between the pin(4) and V_{CC} line. The signal waveform is the rectangular wave, and the level is $500mV_{p-p}$ (fosc = 1.45MHz, typ.)
- The higher local oscillation frequency (fOSC) to be, the lower buff output level to be owing to the load capacity. So, in the case that it is connected to other circuits, take care of the input capacity of these circuits and stray capacity of wire.


6. Tuning LED driver and stereo LED driver

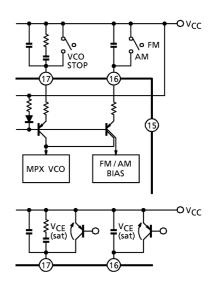

- The tuning LED driver and stereo LED driver don't have current limit resistance shown in the right figure. So, it is necessary to add the current limit resistance: R10, R11.
- Set up the values of R₁₀, R₁₁ to keep the drive currents ID10, ID11 under 10mA.

7.FM detection circuit

For the FM detection circuit, detection coil is able to use instead of ceramic discriminator. Recommended circuit and recommended coil are as follows. In this case, please take care that V_{in} (lim.) falls a little.

Test	Co	Qo		Tu	rns		Wire	REF
Frequency	(pF)	Q 0	1–2	2–3	1–3	4–6	(mmø)	NEI -
10.7MHz	100	100			12	_	0.12 UEW	SUMIDA ELECTRIC CO., LTD 2153–4095–189 or equivalent

8. FM / AM switch and forced monaural switch


FM / AM switch over and stere / forced monaural switch over are done by internal PNP transistors ON / OFF which are connected to pin(16) and pin (17) respectively.

The threshold voltages of these PNP transistors are $V_{\rm th}$ = $V_{\rm CC}$, and for switching, we recommend to use mechanical switch.

(Direct short to VCC line.)

In the case of the electrical switch over by transistor, set up VCE (saturation voltage between collector and emitter) 50mV or less, otherwise there are some cases that it does not become the AM mode and force monaural mode.

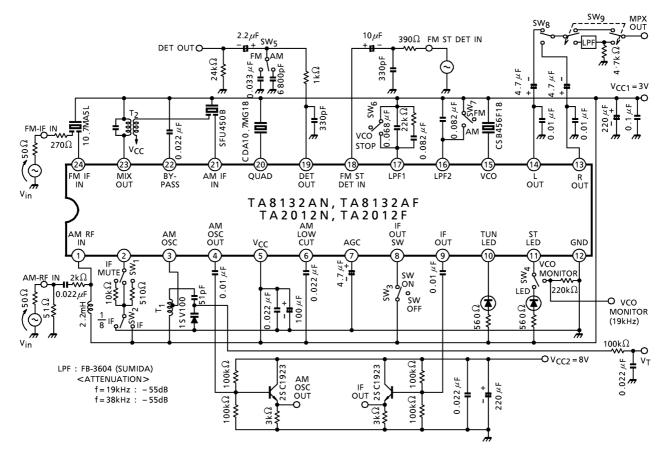
When these external switches are ON, the currents which flow into pin(16) and pin(17) are 100μ A and 20μ A respectively. (Typical value at V_{CC} = 3V)

Characte	eristic	Symbol	Rating	Unit	
Supply voltage		V _{CC}	8	V	
LED current		I _{LED}	10	mA	
LED voltage		V _{LED}	8	V	
Power dissipation	TA8132AN	PD (Noto)	1200	mW	
Power dissipation	TA8132AF	PD (Note)	400		
Operating Temperate	ure	T _{opr}	-25~75	°C	
Storage temperature		T _{stg}	-55~150	°C	

Maximum Ratings (Ta = 25°C)

(Note): Derated above 25°C in the proportion of 9.6mW / °C for TA8132AN, TA2012N and of 3.2mW / °C for TA8132AF, TA2012F.

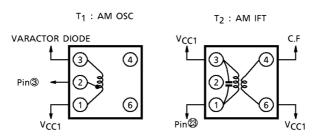
Electrical characteristics

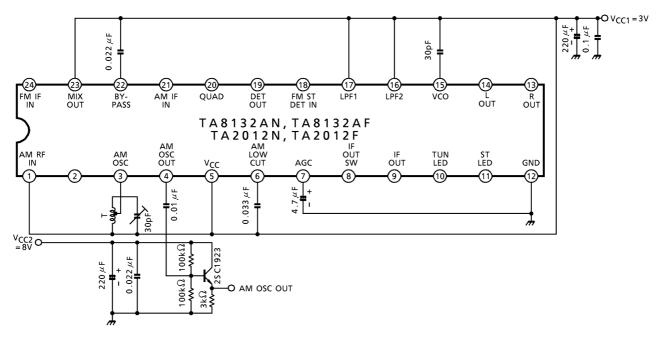

Unless Otherwise Specified, Ta = 25°C, V_{CC1} = 3V, $SW_1 \rightarrow 10k\Omega$, $SW_3 \rightarrow OFF$ FM IF: f = 10.7MHz, Δf = ±22.5kHz, f_m = 1kHz AM: f = 1MHz, MOD = 30%, f_m = 1kHz MPX: f_m = 1kHz

	Characteris	stic	Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit	
Supp	Supply current		I _{CC} (FM)	1	FM mode, V _{in} = 0	_	11.0	14.0	mA	
Supp			I _{CC} (AM)	1	AM mode, V _{in} = 0	—	10.5	13.5	IIIA	
	Input limiting voltage		V _{in (lim.)}	1	-3dB limiting point	41	46	51	dBµV EMF	
	Recovered voltage	output	V _{OD}	1	V _{in} = 80dBµV EMF	50	75	100	mV _{rms}	
	Signal to no ratio	ise	S / N	1	V _{in} = 80dBµV EMF	-	65		dB	
	Total harmo	nic	THD	1	V _{in} = 80dBµV EMF	_	0.2	_	%	
	AM rejection ratio		AMR	1	V _{in} = 80dBµV EMF	—	38		dB	
	LED on sensitivity		VL	1	I _L = 1mA	48	53	58	dBµV EMF	
FM	IF count	IF	f _{IF} (FM)	1	V _{in} = 80dBµV EMF, SW ₂ →V _{CC} , SW ₃ →ON	_	10.7	_	MHz	
IF	output frequency	1 / 8 IF	f _{1 / 8 IF} (FM)	1	V _{in} = 80dBµV EMF, SW ₂ →GND _, SW ₃ →ON	1.3374	1.3375	1.3376	IVILITZ	
	IF count output	IF	V _{IF} (FM)	1	$V_{in} = 61dB\mu V EMF,$ SW ₂ \rightarrow V _{CC} , SW ₃ \rightarrow ON	350	500		m\/	
	voltage	1 / 8 IF	V _{1 / 8 IF} (FM)	1	V _{in} = 61dBµV EMF, SW ₂ →GND _, SW ₃ →ON	350	500		∙ mV _{p−p}	
					$SW_1 \rightarrow 0$, $SW_2 \rightarrow GND$, $SW_3 \rightarrow ON$	_	76			
	IF count out	put	IE (ENT	1	$SW_1 \rightarrow 510\Omega$, $SW_2 \rightarrow GND$, $SW_3 \rightarrow ON$	_	68	_	dBµV	
	sensitivity				$\begin{array}{c} SW_1 \rightarrow 0, SW_2 \rightarrow, V_{CC,} \\ SW_3 \rightarrow ON \end{array}$	_	77	_	. EMF	
				I	$\begin{array}{l} SW_1 \rightarrow 510\Omega, SW_2 \rightarrow, V_{CC,} \\ SW_3 \rightarrow ON \end{array}$	_	69	_		

	Characteristic	Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit	
	Gain	GV	1	V _{in} = 26dBµV EMF	28	57	85		
	Recovered output voltage	V _{OD}	1	V _{in} = 60dBµV EMF	50	75	100	mV _{rms}	
	Signal to noise ratio	S/N	1	V _{in} = 60dBµV EMF	_	41	_	dB	
	Total harmonic distortion	THD	1	V _{in} = 60dBµV EMF	_	1.0	_	%	
	LED on sensitivity	VL	1	I _L = 1mA	21	26	31	dBµV EMF	
	Local OSC buff. output voltage	V _{OSC} (AM)	1	f _{OSC} = 1.45MHz	350	500	—	m\/	
AM			2	f _{OSC} = 27MHz	_	500	_	mV _{p-p}	
	IF count output voltage	V _{IF} (AM)	1	V _{in} = 39dBµV EMF, SW ₃ →ON	350	500	_	mV _{p-p}	
				$SW_1 \rightarrow 0$, $SW_2 \rightarrow GND$, $SW_3 \rightarrow ON$	_	49	_		
	IF count output			$SW_1 \rightarrow 510\Omega$, $SW_2 \rightarrow GND$, $SW_3 \rightarrow ON$	_	42	_	dBµV	
	sensitivity	IF _{sens.} (AM)	1	$SW_1 \rightarrow 0, SW_2 \rightarrow, V_{CC}, SW_3 \rightarrow on$	_	49	_	EMF	
				$\begin{array}{l} SW_1 \rightarrow 510\Omega, SW_2 \rightarrow, V_{CC,} \\ SW_3 \rightarrow ON \end{array}$	_	42	_		
Pin(1)	9) output resistance	R ₁₉	1	FM mode	_	0.6	_	kΩ	
1 11(13		19		AM mode	—	12	-	K12	

	Characteri	stic	Symbol	Test Cir– cuit	Test Cond	ition	Min.	Тур.	Max.	Unit
	Input resist	ance	R _{IN}	1	—		_	25	-	kΩ
	Output resistance		R _{OUT}	1	-		—	5	_	K12
	Max. composite signal input voltage		V _{in MAX} (stereo)	1	L + R = 90%, P = 10% THD = 3%, SW ₉ →LPF	: ON	_	350	_	mV _{rms}
					$L + R = 135 \text{mV}_{rms}$	f _m = 100kHz	—	42	_	
	Separation		Sep	—	$P = 15mV_{rms}$,	f _m = 1kHz	35	42	_	dB
				SW ₉ →LPF: ON f _m	f _m = 10kHz	—	42	_		
	Total	Monaural	THD (monaural)		V_{in} = 150 mV _{rms} (mono) L + R = 135mV _{rms} , P = 15mV _{rms} SW ₉ →LPF: ON		_	0.2	_	%
МРХ	harmonic distortion	Stereo	THD (stereo)	1			_	0.2	_	
	Voltage gai	n	G _V (MPX)	1	V _{in} = 150mV _{rms} (mono)		-5	-3	-1	dB
	Channel ba	lance	C.B.	1	V _{in} = 150mV _{rms} (mono))	-2	0	2	dB
	Stereo LED	ON	V _L (ON)	- 1	Pilot input		_	8	15	m)/
	sensitivity	OFF	V _L (OFF)				2	6	_	mV _{rms}
	Stereo LED) hysteresis	V _H	1	To LED turn off from LED turn on		_	2	_	mV _{rms}
	Capture rar	nge	C.R.	1	P = 15mV _{rms}		—	±1.3	—	%
	Signal to no	oise ratio	S / N	1	V _{in} = 150mV _{rms} (mono))	—	78	—	dB

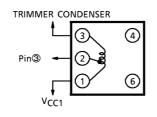

Test Circuit 1

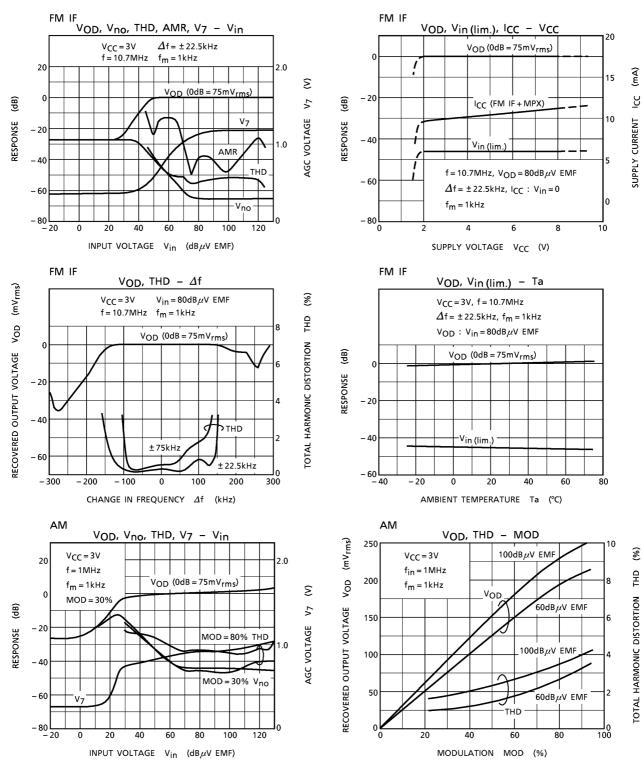

Coil Data (test circuit 1)

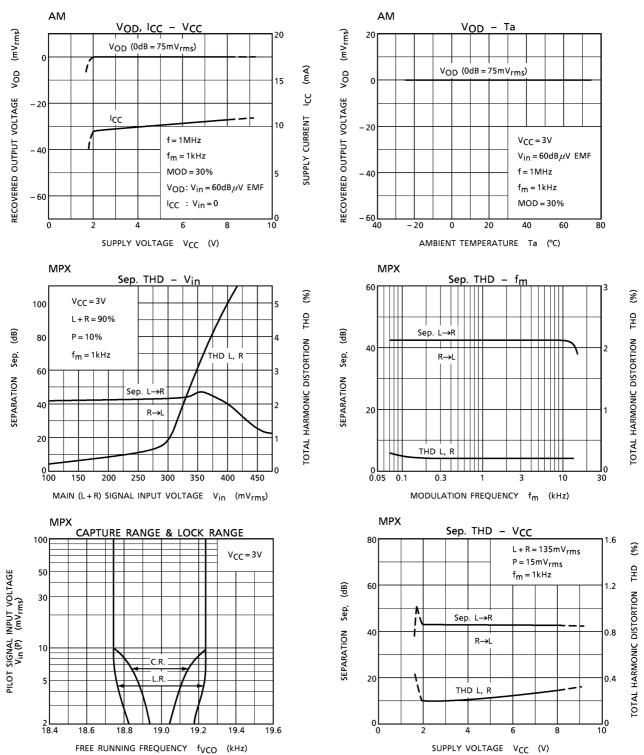
Coil No.	f	L (µH)	C _o (pF)	Qo	Turn				Wire	
					1–2	2–3	1–3	4–6	(mm)	RED. (Coil No.)
T ₁ AM OSC	796kHz	288	_	115	13	73	-	_	0.08 UEW	4147-1356-038 (S)
T ₂ AM IFT	455KHz		180	120			180	15	0.06 UEW	2150-2162-165 (S)

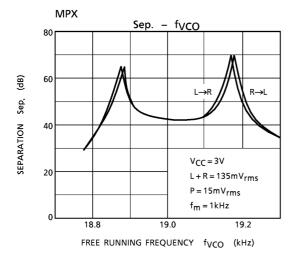
(S): SUMIDA ELECTRIC Co., Ltd.

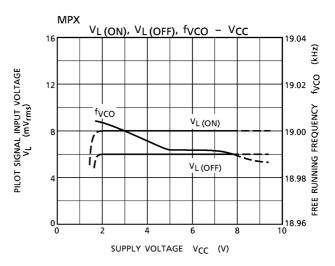
Test Circuit 2

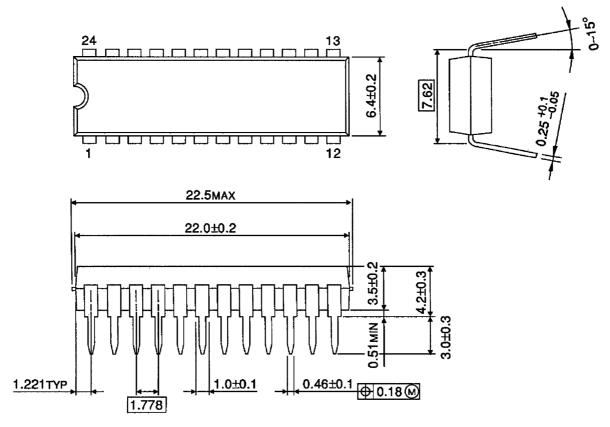



Coil Data (test circuit 2)


Coil No.	f	L (µH)	C _o (pF)	Qo	Turn				Wire	REF. (Coil No.)
					1–2	2–3	1–3	4–6	(mm)	
T AM OSC	7.96MHz	1.4	_	84	1	6	7	_	0.08 UEW	(T) 7PL-1344Y


(T): TOKO Co., Ltd.

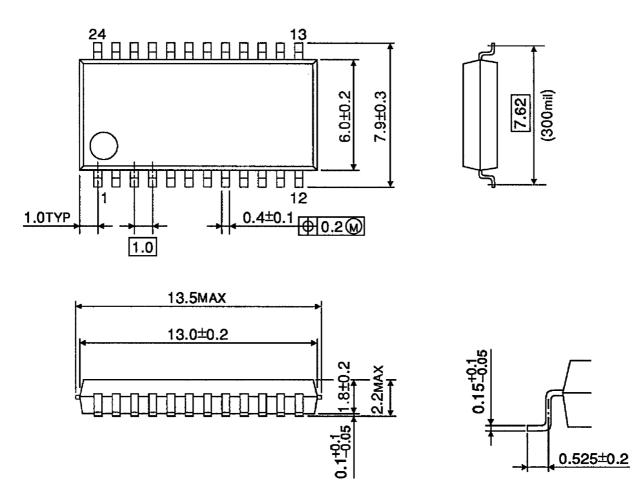

T : AM OSC



Package Dimensions

SDIP24-P-300-1.78

Unit : mm



Weight: 1.2g (typ.)

Package Dimensions

SSOP24-P-300-1.00

Unit : mm

Weight: 0.31g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

Copyright Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com