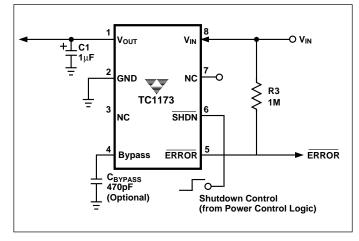


# 300mA CMOS LDO with Shutdown, ERROR Output and Bypass


## FEATURES

- Extremely Low Supply Current for Longer Battery Life!
- Very Low Dropout Voltage
- Guaranteed 300mA Output
- Standard or Custom Output Voltages
- ERROR Output Can be Used as a Low Battery Detector or Processor Reset Generator
- Power-Saving Shutdown Mode
- Bypass Input for Ultra-Quiet Operation
- Over-Current and Over-Temperature Protection
- Space-Saving MSOP Package Option

## **APPLICATIONS**

- Battery-Operated Systems
- Portable Computers
- Medical Instruments
- Instrumentation
- Cellular / GSM / PHS Phones
- Linear Post-Regulator for SMPS
- Pagers

#### **TYPICAL APPLICATION**



## **GENERAL DESCRIPTION**

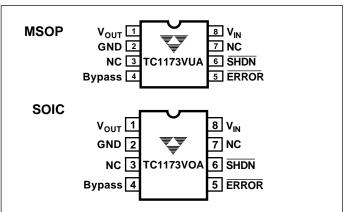
The TC1173 is a precision output (typically  $\pm 0.5\%$ ) CMOS low dropout regulator. Total supply current is typically 50µA at full load (20 to 60 times lower than in bipolar regulators!).

TC1173 key features include ultra low noise operation (plus optional Bypass input); very low dropout voltage (typically 240mV at full load) and internal feed-forward compensation for fast response to step changes in load. An error output (ERROR) is asserted when the TC1173 is out-of-regulation (due to a low input voltage or excessive output current). ERROR can be set as a low battery warning or as a processor RESET signal (with the addition of an external RC network). Supply current is reduced to  $0.05\mu$ A (typical) and V<sub>OUT</sub> and ERROR fall to zero when the shutdown input is low.

The TC1173 incorporates both over-temperature and over-current protection. The TC1173 is stable with an output capacitor of only  $1\mu$ F and has a maximum output current of 300mA.

## **ORDERING INFORMATION**

| Part<br>Number | Package    | Junction<br>Temp. Range |
|----------------|------------|-------------------------|
| TC1173-xxVOA   | 8-Pin SOIC | – 40°C to +125°C        |
| TC1173-xxVUA   | 8-Pin MSOP | - 40°C to +125°C        |


#### Available Output Voltages:

2.5, 2.8, 3.0, 3.3, 5.0

xx indicates output voltages

Other output voltages are available. Please contact TelCom Semiconductor for details.

#### **PIN CONFIGURATION**



# TC1173

## **ABSOLUTE MAXIMUM RATINGS\***

| Input Voltage         | 6.5V                                  |
|-----------------------|---------------------------------------|
|                       | $(V_{SS} - 0.3)$ to $(V_{IN} + 0.3)$  |
| Power Dissipation     | Internally Limited (Note 7)           |
| Operating Temperature | $-40^{\circ}C < T_{J} < 125^{\circ}C$ |

\*Absolute Maximum Ratings indicate device operation limits beyond damage may occur. Device operation beyond the limits listed in *Electrical Characteristics* is not recommended.

**ELECTRICAL CHARACTERISTICS:**  $V_{IN} = V_{OUT} + 1V$ ,  $I_L = 0.1\mu A$ ,  $C_L = 3.3\mu F$ ,  $\overline{SHDN} > V_{IH}$ ,  $T_A = 25^{\circ}C$ , unless otherwise noted. **BOLDFACE** type specifications apply for junction temperatures of  $-40^{\circ}C$  to  $+125^{\circ}C$ 

| V <sub>IN</sub>                    | Input Operating Voltage                  |                                                                                             |                           | Тур             | Max                       | Units  |
|------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------|-----------------|---------------------------|--------|
|                                    |                                          |                                                                                             | _                         | _               | 6.0                       | V      |
| Iout <sub>MAX</sub>                | Maximum Output Current                   |                                                                                             | 300                       |                 | _                         | mA     |
| Vout                               | Output Voltage                           | Note 1                                                                                      | <br>V <sub>R</sub> - 2.5% | $V_R \pm 0.5\%$ | <br>V <sub>R</sub> + 2.5% | V      |
| ΔV <sub>OUT</sub> /ΔT              | V <sub>OUT</sub> Temperature Coefficient | Note 2                                                                                      | _                         | <br>40          | —                         | ppm/°C |
| $\Delta V_{OUT} / \Delta V_{IN}$   | Line Regulation                          | $(V_R + 1V) \le V_{IN} \le 6V$                                                              | —                         | 0.05            | 0.35                      | %      |
| ΔVουτ/Vout                         | Load Regulation                          | $I_L = 0.1 \text{mA to } I_{\text{OUTMAX}} \text{ (Note 3)}$                                |                           | 0.5             | 2.0                       | %      |
| V <sub>IN</sub> – V <sub>OUT</sub> | Dropout Voltage (Note 4)                 | I <sub>L</sub> = 0.1mA<br>I <sub>L</sub> = 100mA<br>I <sub>L</sub> = 300mA                  |                           | 20<br>80<br>240 | 30<br>160<br>480          | mV     |
| I <sub>SS1</sub>                   | Supply Current                           | SHDN = V <sub>IH</sub>                                                                      | —                         | 50              | 90                        | μA     |
| I <sub>SS2</sub>                   | Shutdown Supply Current                  | SHDN = 0V                                                                                   |                           | 0.05            | 0.5                       | μA     |
| PSRR                               | Power Supply Rejection Ratio             | F <sub>RE</sub> ≤ 1kHz                                                                      |                           | 60              |                           | dB     |
| loutsc                             | Output Short Circuit Current             | $V_{OUT} = 0V$                                                                              | _                         | 550             | 650                       | mA     |
| ΔVουτΔΡD                           | Thermal Regulation                       | Note 5                                                                                      | _                         | 0.04            | _                         | V/W    |
| eN                                 | Output Noise                             | $\label{eq:F} \begin{array}{l} F = 1kHz, \ C_OUT = 1\muF, \\ R_LOAD = 50\Omega \end{array}$ | _                         | 260             | —                         | nV/√Hz |
| SHDN Input                         |                                          |                                                                                             | 1                         | 1               |                           |        |

| VIH             | SHDN Input High Threshold | 45 |   |    | %V <sub>IN</sub> |
|-----------------|---------------------------|----|---|----|------------------|
| V <sub>IL</sub> | SHDN Input Low Threshold  | —  | — | 15 | %V <sub>IN</sub> |

**ERROR** Output

| V <sub>MIN</sub> | Minimum Operating Voltage |                    | 1.0 | —                     |     | V  |
|------------------|---------------------------|--------------------|-----|-----------------------|-----|----|
| V <sub>OL</sub>  | Output Logic Low Voltage  | 1mA Flows to ERROR |     | —                     | 400 | mV |
| V <sub>TH</sub>  | ERROR Threshold Voltage   |                    |     | 0.95 x V <sub>R</sub> | —   | V  |
| V <sub>OL</sub>  | ERROR Positive Hysteresis | Note 7             | _   | 50                    |     | mV |

**NOTES:** 1.  $V_R$  is the user-programmed regulator output voltage setting.

2.  $T_C V_{OUT} = (V_{OUTMAX} - V_{OUTMIN}) \times 10^6$ 

ν<sub>ουτ</sub> χ Δτ

3. Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

4. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.

5. Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to  $I_{LMAX}$  at  $V_{IN} = 6V$  for T = 10msec.

6. The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature, and the thermal resistance from junction-to-air (i.e. T<sub>A</sub>, T<sub>J</sub>, θ<sub>JA</sub>). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see *Thermal Considerations* section of this data sheet for more details.

7. Hysteresis voltage is referenced to V<sub>R</sub>.

## **DETAILED DESCRIPTION**

The TC1173 is a fixed output, low drop-out regulator. Unlike bipolar regulators, the TC1173 supply current does not increase with load current. In addition,  $V_{OUT}$  remains stable and within regulation at very low load currents (an important consideration in RTC and CMOS RAM battery back-up applications). TC1173 pin functions are detailed below:

## **PIN DESCRIPTIONS**

| Pin |                 |                                                                                                                                                                                                                                                                                             |
|-----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Symbol          | Description                                                                                                                                                                                                                                                                                 |
| 1   | Vout            | Regulated voltage output                                                                                                                                                                                                                                                                    |
| 2   | GND             | Ground terminal                                                                                                                                                                                                                                                                             |
| 3   | NC              | No connect                                                                                                                                                                                                                                                                                  |
| 4   | Bypass          | Reference bypass input. Connecting a 470pF to this input further reduces output noise.                                                                                                                                                                                                      |
| 5   | ERROR           | Out-of-Regulation Flag (Open Drain Out-<br>put). This output goes low when $V_{OUT}$ is out-<br>of-tolerance by approximately -5%.                                                                                                                                                          |
| 6   | SHDN            | Shutdown control input. The regulator is fully<br>enabled when a logic high is applied to this<br>input. The regulator enters shutdown when a<br>logic low is applied to this input. During<br>shutdown, output voltage falls to zero and<br>supply current is reduced to 0.05µA (typical). |
| 7   | NC              | No connect                                                                                                                                                                                                                                                                                  |
| 8   | V <sub>IN</sub> | Unregulated supply input                                                                                                                                                                                                                                                                    |
| 8   | V <sub>IN</sub> | Unregulated supply input                                                                                                                                                                                                                                                                    |

Figure 1 shows a typical application circuit. The regulator is enabled any time the shutdown input (SHDN) is above  $V_{IH}$ , and shutdown (disabled) when SHDN is at or below  $V_{IL}$ .

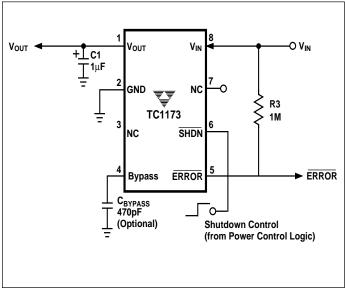



Figure 1: Typical Application Circuit

# TC1173

SHDN may be controlled by a CMOS logic gate, or I/O port of a microcontroller. If the SHDN input is not required, it should be connected directly to the input supply. While in shutdown, supply current decreases to  $0.05\mu$ A (typical), V<sub>OUT</sub> falls to zero and ERROR is disabled.

#### **ERROR** Output

ERROR is driven low whenever  $V_{OUT}$  falls out of regulation by more than – 5% (typical). This condition may be caused by low input voltage, output current limiting, or thermal limiting.

The ERROR threshold is 5% below rated V<sub>OUT</sub> regardless of the programmed output voltage value (e.g., ERROR = V<sub>OL</sub> at 4.75V (typ) for a 5.0V regulator and 2.85V (typ) for a 3.0V regulator). ERROR output operation is shown in Figure 2. Note that ERROR is active when V<sub>OUT</sub> is at or below V<sub>TH</sub>, and inactive when V<sub>OUT</sub> is above V<sub>TH</sub> + V<sub>H</sub>.

As shown in Figure 1, <u>ERROR</u> can be used as a battery low flag, or as a processor RESET signal (with the addition of timing <u>capacitor</u> C2). R1 x C3 should be chosen to maintain ERROR below V<sub>IH</sub> of the processor RESET input for at least 200msec to allow time for the system to stabilize. Pull-up resistor R1 can be tied to V<sub>OUT</sub>, V<sub>IN</sub> or any other voltage less than (V<sub>IN</sub> + 0.3V.)

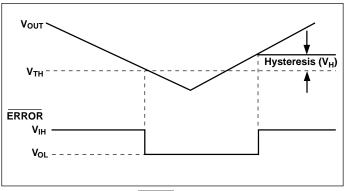



Figure 2: ERROR Output Operation

#### **Output Capacitor**

A 1µF (min) capacitor from V<sub>OUT</sub> to ground is recommended. The output capacitor should have an effective series resistance of 5 $\Omega$  or less. A 1µF capacitor should be connected from V<sub>IN</sub> to GND if there is more than 10 inches of wire between the regulator and the AC filter capacitor, or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitor types can be used. (Since many aluminum electrolytic capacitors freeze at approximately – 30°C, solid tantalums are recommended for applications operating below – 25°C.) When operating from sources other than batteries, supply-noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.

# TC1173

#### **Bypass Input**

A 470pF capacitor connected from the Bypass input to ground reduces noise present on the internal reference, which in turn significantly reduces output noise. If output noise is not a concern, this input may be left unconnected. Larger capacitor values may be used, but results in a longer time period to rated output voltage when power is initially applied.

## **Thermal Considerations**

#### **Thermal Shutdown**

Integrated thermal protection circuitry shuts the regulator off when die temperature exceeds 150°C. The regulator remains off until the die temperature drops to approximately 140°C.

#### **Power Dissipation**

The amount of power the regulator dissipates is primarily a function of input and output voltage, and output current. The following equation is used to calculate worst case *actual* power dissipation:

 $P_D \approx (V_{INMAX} - V_{OUT_{MIN}})I_{LOAD_{MAX}}$ 

#### Equation 1.

The maximum *allowable* power dissipation (Equation 2) is a function of the maximum ambient temperature ( $T_{AMAX}$ ), the maximum allowable die temperature (125°C), and the thermal resistance from junction-to-air ( $\theta_{JA}$ ). The 8-Pin SOIC package has a  $\theta_{JA}$  of approximately **160°C/Watt**, while the 8-Pin MSOP package has a  $\theta_{JA}$  of approximately **200°C/Watt**, both when mounted on a single layer FR4 dielectric copper clad PC board.

 $\mathsf{P}_{\mathsf{DMAX}} = \ (\frac{\mathsf{T}_{\mathsf{JMAX}} - \mathsf{T}_{\mathsf{AMAX}}}{\theta_{\mathsf{JA}}})$ 

Where all terms are previously defined.

Equation 2.

Equation 1 can be used in conjunction with Equation 2 to ensure regulator thermal operation is within limits. For example:

 $V_{INMAX} = 3.0V \pm 10\%$ 

GIVEN:

 $V_{OUT_{MIN}} = 2.7V \pm 0.5\%$   $I_{LOADMAX} = 250mA$   $T_{J_{MAX}} = 125^{\circ}C$   $T_{A_{MAX}} = 55^{\circ}C$   $\theta_{JA} = 200^{\circ}C/W$ 8-Pin MSOP Package

FIND: 1. Actual power dissipation 2. Maximum allowable dissipation

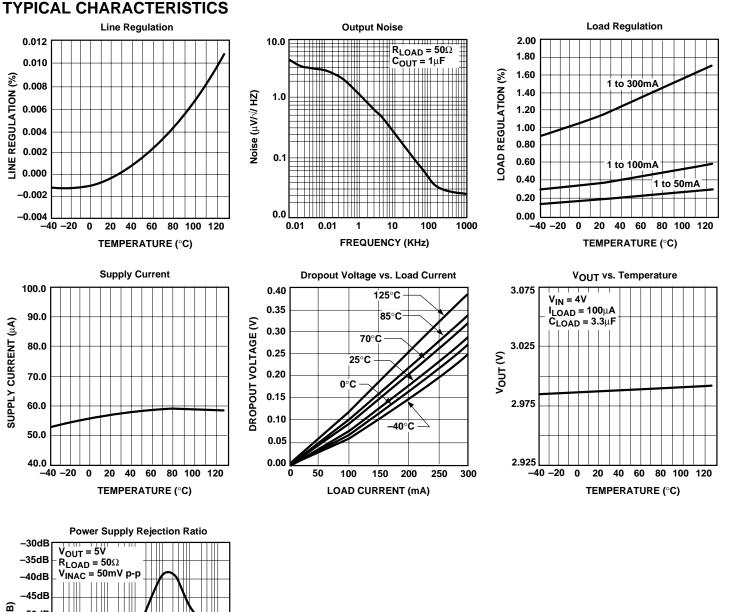
Actual power dissipation:

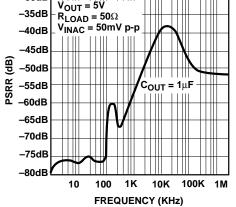
$$P_D \approx (V_{INMAX} - V_{OUT_{MIN}})I_{LOAD_{MAX}}$$
  
= [(3.0 x 1.1) - (2.7 x .995)]250 x 10<sup>-3</sup>

= <u>155mW</u>

Maximum allowable power dissipation:

$$P_{D} \approx \frac{(TJ_{MAX} - TA_{MAX})}{\theta_{JA}}$$
$$= \frac{(125 - 55)}{200}$$
$$= 350 \text{mW}$$

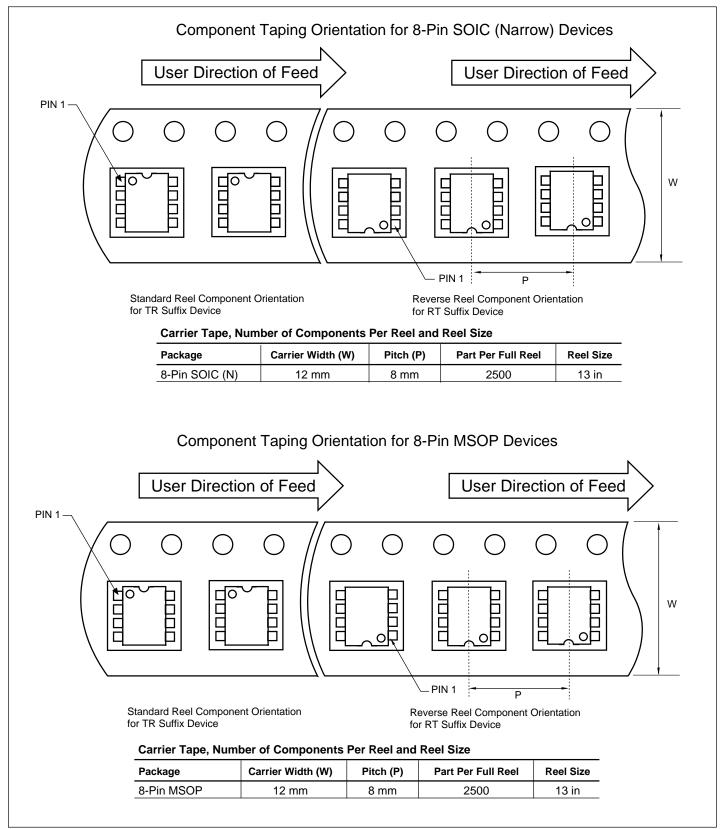

In this example, the TC1173 dissipates a maximum of only 155mW; far below the allowable limit of 350mW. In a similar manner, Equation 1 and Equation 2 can be used to calculate maximum current and/or input voltage limits. For example, the maximum allowable  $V_{IN}$  is found by substituting the maximum allowable power dissipation of 350mW into Equation 1, from which  $V_{INMAX} = 4.1V$ .


#### Layout Considerations

The primary path of heat conduction out of the package is via the package leads. Therefore, layouts having a ground plane, wide traces at the pads, and wide power supply bus lines combine to lower  $\theta_{JA}$  and, therefore, increase the maximum allowable power dissipation limit.

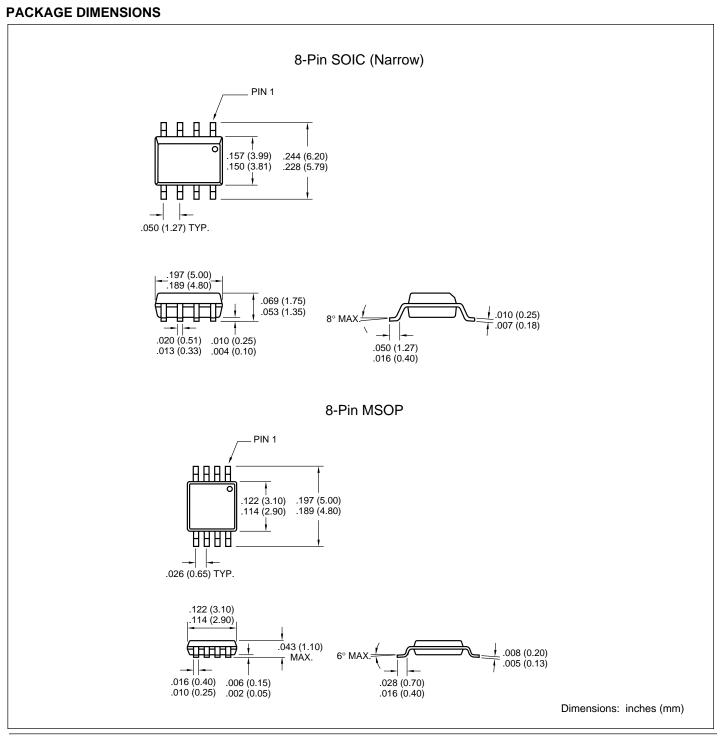
## <u>300mA CMOS LDO With Shutdown,</u> ERROR Output, And Bypass

# TC1173






# 300mA<u>CMOS</u>LDO With Shutdown, ERROR Output, And Bypass


# TC1173

### TAPE AND REEL DIAGRAMS



# <u>300mA</u> CMOS LDO With Shutdown, ERROR Output, And Bypass

# TC1173



#### Sales Offices

TelCom Semiconductor, Inc. 1300 Terra Bella Avenue P.O. Box 7267 Mountain View, CA 94039-7267 TEL: 650-968-9241 FAX: 650-967-1590 E-Mail: liter@telcom-semi.com TelCom Semiconductor, GmbH Lochhamer Strasse 13 D-82152 Martinsried Germany TEL: (011) 49 89 895 6500 FAX: (011) 49 89 895 6502 2 TelCom Semiconductor H.K. Ltd. 10 Sam Chuk Street, Ground Floor San Po Kong, Kowloon Hong Kong TEL: (011) 852-2350-7380 FAX: (011) 852-2354-9957 Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com