Personal Computer Data Acquisition A/D Converter

Features

- Upgrade of Pin-Compatible TC7135, ICL7135
- 200kHz Operation
- Single 5V Operation With TC7660
- Multiplexed BCD Data Output
- UART and Microprocessor Interface
- Control Outputs for Auto-Ranging
- Input Sensitivity: $100 \mu \mathrm{~V}$
- No Sample and Hold Required

Applications

- Personal Computer Data Acquisition
- Scales, Panel Meters, Process Controls
- HP-IL Bus Instrumentation

Device Selection Table

Part Number	Package	Temperature Range
TC835CBU	64 -PinPQFP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC835CKW	44 -PinPQFP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC835CPI	28 -PinPDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Note: Tape and Reel available for 44-Pin PQFP package.

General Description

The TC835 is a low power, 4-1/2 digit (0.005% resolution), BCD analog to digital converter (ADC) that has been characterized for 200 kHz clock rate operation. The five conversions per second rate is nearly twice as fast as the ICL7135 or TC7135. The TC835, like the TC7135, does not use the external diode resistor rollover error compensation circuits required by the ICL7135.
The multiplexed BCD data output is perfect for interfacing to personal computers. The low cost, greater than 14-bit high-resolution and $100 \mu \mathrm{~V}$ sensitivity makes the TC835 exceptionally cost-effective.
Microprocessor-based data acquisition systems are supported by the BUSY and STROBE outputs, along with the RUN/HOLD input of the TC835. The OVERRANGE, UNDERRANGE, BUSY and RUN/ HOLD control functions, plus multiplexed BCD data outputs, make the TC835 the ideal converter for $\mu \mathrm{P}$ based scales, measurement systems and intelligent panel meters.
The TC835 interfaces with full function LCD and LED display decoder/drivers. The UNDERRANGE and OVERRANGE outputs may be used to implement an auto-ranging scheme or special display functions.

TC835

Package Type

Typical Application

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*
Positive Supply Voltage... 6 V
Negative Supply Voltage .. -9V
Analog Input Voltage (Pin 9 or 10) ... V+ to V- (Note 2)
Reference Input Voltage (Pin 2) V+ to V-
Clock Input Voltage .. OV to V^{+}
Operating Temperature Range................ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Power Dissipation ($\mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$)
28-Pin Plastic DIP ..

64-Pin PQFP 1.14Ω
*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC835 ELECTRICAL SPECIFICATIONS

Electrical Characteristics: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{CLOCK}}=200 \mathrm{kHz}, \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Min	Typ	Max	Unit	Test Conditions
Analog						
	Display Reading with Zero Volt Input	-0.0000	± 0.0000	+0.0000	Display Reading	Note 3, Note 4
TC_{Z}	Zero Reading Temperature Coefficient	-	0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, (Note 5)
$\mathrm{TC}_{\mathrm{FS}}$	Full-Scale Temperature Coefficient	-	-	5	ppm/ ${ }^{\circ} \mathrm{C}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V} ; \\ \text { (Note 5, Note } 6 \\ \hline \end{array}$
NL	Nonlinearity Error	-	0.5	1	Count	Note 7
DNL	Differential Linearity Error	-	0.01	-	LSB	Note 7
	Display Reading in Ratiometric Operation	+0.9996	+0.9998	+1.0000	Display Reading	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF, }}$, (Note 3)
\pm FSE	\pm Full Scale Symmetry Error (Rollover Error)	-	0.5	1	Count	$-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }}$, (Note 8)
I_{N}	Input Leakage Current	-	1	10	pA	Note 4
e_{N}	Noise	-	15	-	$\mu \mathrm{V}_{\text {P-P }}$	Peak to Peak Value not Exceeded 95\% of Time
Digital						
ILL	Input Low Current	-	10	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
IIH	Input High Current	-	0.08	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	-	0.2	0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
V_{OH}	Output High Voltage;$\begin{aligned} & \mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{4}, \mathrm{~B}_{8}, \mathrm{D}_{1}-\mathrm{D}_{5} \\ & \text { Busy, Polarity, Overrange, } \end{aligned}$Underrange, Strobe	2.4	4.4	5	V	$\mathrm{I}_{\mathrm{OH}}=1 \mathrm{~mA}$
		4.9	4.99	5	V	$\mathrm{IOH}=10 \mu \mathrm{~A}$
$\mathrm{f}_{\text {CLK }}$	Clock Frequency	0	200	1200	kHz	Note 10

Note 1: Functional operation is not implied.
2: Limit input current to under $100 \mu \mathrm{~A}$ if input voltages exceed supply voltage.
3: Full scale voltage $=2 \mathrm{~V}$.
4: $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$.
5: $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.
6: External reference temperature coefficient less than $0.01 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
7: $\quad-2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+2 \mathrm{~V}$. Error of reading from best fit straight line.
8: $\left|\mathrm{V}_{\mathbb{N}}\right|=1.9959$.
9: Test circuit shown in Figure 1-1.
10: Specification related to clock frequency range over which the TC835 correctly performs its various functions. Increased errors result at higher operating frequencies.

TC835 ELECTRICAL SPECIFICATIONS (CONTINUED)

Electric	Characteristics: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}+=$, V- =	unle	e sp	
Symbol	Parameter	Min	Typ	Max	Unit	Test Conditions
Power S	upply					
V+	Positive Supply Voltage	4	5	6	V	
V-	Negative Supply Voltage	-3	-5	-8	V	
I+	Positive Supply Current	-	1	3	mA	$\mathrm{f}_{\text {CLK }}=0 \mathrm{~Hz}$
I-	Negative Supply Current	-	0.7	3	mA	$\mathrm{f}_{\text {CLK }}=0 \mathrm{~Hz}$
PD	Power Dissipation	-	8.5	30	$\mathrm{m} \Omega$	$\mathrm{f}_{\text {CLK }}=0 \mathrm{~Hz}$

Note 1: Functional operation is not implied.
2: Limit input current to under $100 \mu \mathrm{~A}$ if input voltages exceed supply voltage.
3: \quad Full scale voltage $=2 \mathrm{~V}$.
4: $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$.
5: $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.
6: External reference temperature coefficient less than $0.01 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
7: $-2 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq+2 \mathrm{~V}$. Error of reading from best fit straight line.
8: $\left|\mathrm{V}_{\mathrm{IN}}\right|=1.9959$.
9: Test circuit shown in Figure 1-1.
10: Specification related to clock frequency range over which the TC835 correctly performs its various functions. Increased errors result at higher operating frequencies.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number 28-Pin PDIP	Symbol	Description
1	V-	Negative power supply input.
2	REF IN	External reference input.
3	ANALOG COMMON	Reference point for REF IN.
4	INT OUT	Integrator output. Integrator capacitor connection.
5	AZ IN	Auto zero input. Auto zero capacitor connection.
6	BUFF OUT	Analog input buffer output. Integrator resistor connection.
7	$\mathrm{C}_{\text {REF }}{ }^{-}$	Reference capacitor input. Reference capacitor negative connection.
8	$\mathrm{C}_{\text {REF }}{ }^{+}$	Reference capacitor input. Reference capacitor positive connection.
9	-INPUT	Analog input. Analog input negative connection.
10	+INPUT	Analog input. Analog input positive connection.
11	V+	Positive power supply input.
12	D5	Digit drive output. Most Significant Digit (MSD)
13	B1	Binary Coded Decimal (BCD) output. Least Significant Bit (LSB)
14	B2	BCD output.
15	B4	BCD output.
16	B8	BCD output. Most Significant Bit (MSB)
17	D4	Digit drive output.
18	D3	Digit drive output.
19	D2	Digit drive output.
20	D1	Digit drive output. Least Significant Digit (LSD)
21	BUSY	Busy output. At the beginning of the signal-integration phase, BUSY goes High and remains High until the first clock pulse after the integrator zero crossing.
22	CLOCK IN	Clock input. Conversion clock connection.
23	POLARITY	Polarity output. A positive input is indicated by a logic High output. The polarity output is valid at the beginning of the reference integrate phase and remains valid until determined during the next conversion.
24	DGND	Digital logic reference input.
25	RUN/HOLD	Run / Hold input. When at a logic High, conversions are performed continuously. A logic Low holds the current data as long as the Low condition exists.
26	STROBE	Strobe output. The STROBE output pulses low in the center of the digit drive outputs.
27	OVERRANGE	Over range output. A logic High indicates that the analog input exceeds the full scale input range.
28	UNDERRANGE	Under range output. A logic High indicates that the analog input is less than 9% of the full scale input range.

3.0 DETAILED DESCRIPTION

(All Pin Designations Refer to 28-Pin DIP)

3.1 Dual Slope Conversion Principles

The TC835 is a dual slope, integrating analog to digital converter. An understanding of the dual slope conversion technique will aid in following the detailed TC835 operational theory.
The conventional dual slope converter measurement cycle has two distinct phases:

1. Input signal integration
2. Reference voltage integration (de-integration)

The input signal being converted is integrated for a fixed time period, with time being measured by counting clock pulses. An opposite polarity constant reference voltage is then integrated until the integrator output voltage returns to zero. The reference integration time is directly proportional to the input signal.
In a simple dual slope converter, a complete conversion requires the integrator output to "ramp-up" and "ramp-down."
A simple mathematical equation relates the input signal, reference voltage and integration time:

EQUATION 3-1:

$$
\frac{1}{\mathrm{R}_{\text {INT }} \mathrm{C}_{I N T}} \int_{0}^{\mathrm{T}_{\text {INT }}} \mathrm{V}_{\text {IN }}(\mathrm{T}) \mathrm{DT}=\frac{\mathrm{V}_{\text {REF }} \mathrm{T}_{\text {DEINT }}}{\mathrm{R}_{\text {INT }} \mathrm{C}_{\text {INT }}}
$$

where:

$$
\begin{aligned}
\mathrm{V}_{\text {REF }} & =\text { Reference voltage } \\
\mathrm{T}_{\text {INT }} & =\text { Signal integration time (fixed) } \\
\mathrm{T}_{\text {DEINT }}= & \text { Reference voltage integration time } \\
& \text { (variable). }
\end{aligned}
$$

For a constant V_{IN} :
EQUATION 3-2:

$$
\mathrm{V}_{\mathrm{IN}}=\frac{\mathrm{V}_{\text {REF }} \mathrm{T}_{\text {DEINT }}}{\mathrm{t}_{\text {INT }}}
$$

The dual slope converter accuracy is unrelated to the integrating resistor and capacitor values, as long as they are stable during a measurement cycle. An inherent benefit is noise immunity. Noise spikes are integrated, or averaged, to zero during the integration periods. Integrating ADCs are immune to the large conversion errors that plague successive approximation converters in high noise environments (see Figure 3-1).

FIGURE 3-1: BASIC DUAL SLOPE CONVERTER

3.2 TC835 Operational Theory

The TC835 incorporates a system zero phase and integrator output voltage zero phase to the normal two phase dual slope measurement cycle. Reduced system errors, fewer calibration steps and a shorter overrange recovery time result.
The TC835 measurement cycle contains four phases:

1. System zero
2. Analog input signal integration
3. Reference voltage integration
4. Integrator output zero

Internal analog gate status for each phase is shown in Table 3-1.

3.2.1 SYSTEM ZERO

During this phase, errors due to buffer, integrator and comparator offset voltages are compensated for by charging C_{AZ} (auto zero capacitor) with a compensating error voltage. With a zero input voltage the integrator output will remain at zero.
The external input signal is disconnected from the internal circuitry by opening the two SW, switches. The internal input points connect to ANALOG COMMON. The reference capacitor charges to the reference voltage potential through SW_{R}. A feedback loop, closed around the integrator and comparator, charges the C_{AZ} capacitor with a voltage to compensate for buffer amplifier, integrator and comparator offset voltages (see Figure 3-2).

FIGURE 3-2: SYSTEM ZERO PHASE

3.2.2 ANALOG INPUT SIGNAL INTEGRATION

The TC835 integrates the differential voltage between the +INPUT and -INPUT pins. The differential voltage must be within the device Common mode range (-1V from either supply rail, typically). The input signal polarity is determined at the end of this phase (see Figure 3-3).

FIGURE 3-3: INPUT SIGNAL INTEGRATION PHASE

3.2.3 REFERENCE VOLTAGE INTEGRATION

The previously charged reference capacitor is connected with the proper polarity to ramp the integrator output back to zero (see Figure 3-4). The digital reading displayed is:

FIGURE 3-4: REFERENCE VOLTAGE INTEGRATION CYCLE

3.2.4 INTEGRATOR OUTPUT ZERO

This phase guarantees the integrator output is at 0 V when the system zero phase is entered and that the true system offset voltages are compensated for. This phase normally lasts 100 to 200 clock cycles. If an overrange condition exists, the phase is extended to 6200 clock cycles (see Figure 3-5).

FIGURE 3-5: INTEGRATOR OUTPUT ZERO PHASE

TABLE 3-1: INTERNAL ANALOG GATE STATUS

Conversion Cycle Phase	$\mathbf{S W}_{\mathbf{1}}$	$\mathbf{s W}_{\mathbf{R I}^{+}}$	$\mathbf{S W}_{\mathbf{R I}^{-}}$	$\mathbf{S W}_{\mathbf{Z}}$	$\mathbf{S W}_{\mathbf{R}}$	$\mathbf{s W}_{\mathbf{1}}$	$\mathbf{s W}_{\mathbf{I Z}}$	Reference Figures
System Zero				Closed	Closed	Closed		Figure 3-2
Input Signal Integration	Closed							Figure 3-3
Reference Voltage Integration		Closed *				Closed		Figure 3-4
Integrator Output Zero						Closed	Closed	Figure 3-5

*Note: Assumes a positive polarity input signal. $\mathrm{SW}_{\text {RI }}$ would be closed for a negative input signal.

4.0 ANALOG SECTION FUNCTIONAL DESCRIPTION

(In Reference to the 28-Pin Plastic Package)

4.1 Differential Inputs (+INPUT (Pin 10) and -INPUT (Pin 9))

The TC835 operates with differential voltages within the input amplifier Common mode range. The input amplifier Common mode range extends from 0.5 V below the positive supply to 1 V above the negative supply. Within this Common mode voltage range, an 86 dB Common mode rejection ratio is typical.
The integrator output also follows the Common mode voltage. The integrator output must not be allowed to saturate. An example of a worst case condition would be when a large positive Common mode voltage with a near full scale negative differential input voltage is applied. The negative input signal drives the integrator positive when most of its swing has been used up by the positive Common mode voltage. For these critical applications, the integrator swing can be reduced to less than the recommended 4 V full scale swing, with the effect of reduced accuracy. The integrator output can swing within 0.3 V of either supply without loss of linearity.

4.2 Analog Common Input (Pin 3)

ANALOG COMMON is used as the -INPUT return during auto zero and de-integrate. If -INPUT is different from ANALOG COMMON, a Common mode voltage exists in the system. This signal is rejected by the excellent CMRR of the converter. In most applications, -INPUT will be set at a fixed, known voltage (power supply common, for instance). In this application, ANALOG COMMON should be tied to the same point, thus removing the common-mode voltage from the converter. The reference voltage is referenced to ANALOG COMMON.

4.3 Reference Voltage Input (REF IN (Pin 2))

The REF IN input must be a positive voltage with respect to ANALOG COMMON. A reference voltage circuit is shown in Figure 4-1.

FIGURE 4-1: USING AN EXTERNAL REFERENCE

5.0 DIGITAL SECTION FUNCTIONAL DESCRIPTION

The major digital subsystems within the TC835 are illustrated in Figure 5-1, with timing relationships shown in Figure 5-2. The multiplexed BCD output data can be displayed on LCD or LED. The digital section is best described through a discussion of the control signals and data outputs.

FIGURE 5-1: DIGITAL SECTION FUNCTIONAL DIAGRAM

FIGURE 5-2: TIMING DIAGRAMS FOR OUTPUTS

5.1 RUN/HOLD Input (Pin 25)

When left open, this pin assumes a logic "1" level. With a RUN/ $\overline{\mathrm{HOLD}}=1$, the TC835 performs conversions continuously, with a new measurement cycle beginning every 40,002 clock pulses.
When RUN/ $\overline{H O L D}$ changes to a logic " 0 ," the measurement cycle in progress will be completed, and data held and displayed as long as the logic "0" condition exists.
A positive pulse ($>300 \mathrm{nsec}$) at RUN/ $\overline{\mathrm{HOLD}}$ initiates a new measurement cycle. The measurement cycle in progress when RUN/HOLD initially assumed the logic " 0 " state must be completed before the positive pulse can be recognized as a single conversion run command.

The new measurement cycle begins with a 10,001count auto zero phase. At the end of this phase, the busy signal goes high.

5.2 STROBE Output (Pin 26)

During the measurement cycle, the $\overline{\text { STROBE }}$ control line is pulsed low five times. The five low pulses occur in the center of the digit drive signals $\left(D_{1}, D_{2}, D_{3}, D_{5}\right)$ (see Figure 5-3).
D_{5} (MSD) goes high for 201 counts when the measurement cycles end. In the center of the D_{5} pulse, 101 clock pulses after the end of the measurement cycle, the first STROBE occurs for one-half clock pulse. After the D_{5} digit strobe, D_{4} goes high for 200 clock pulses. The STROBE goes low 100 clock pulses after D_{4} goes high. This continues through the D_{1} digit drive pulse.

The digit drive signals will continue to permit display scanning. STROBE pulses are not repeated until a new measurement is completed. The digit drive signals will not continue if the previous signal resulted in an overrange condition.
The active low $\overline{\text { STROBE }}$ pulses aid BCD data transfer to UARTs, processors and external latches.

FIGURE 5-3: STROBE SIGNAL LOW FIVE TIMES PER CONVERSION

5.3 BUSY Output

At the beginning of the signal integration phase, BUSY goes high and remains high until the first clock pulse after the integrator zero crossing. BUSY returns to the logic " 0 " state after the measurement cycle ends in an overrange condition. The internal display latches are loaded during the first clock pulse after BUSY and are latched at the clock pulse end. The BUSY signal does not go high at the beginning of the measurement cycle, which starts with the auto zero cycle.

5.4 OVERRANGE Output

If the input signal causes the reference voltage integration time to exceed 20,000 clock pulses, the OVERRANGE output is set to a logic "1." The overrange output register is set when BUSY goes low, and is reset at the beginning of the next reference integration phase.

5.5 UNDERRANGE Output

If the output count is 9% of full scale or less (-1800 counts), the underrange register bit is set at the end of BUSY. The bit is set low at the next signal integration phase.

5.6 POLARITY Output

A positive input is registered by a logic "1" polarity signal. The POLARITY bit is valid at the beginning of Reference Integrate and remains valid until determined during the next conversion.
The POLARITY bit is valid even for a zero reading. Signals less than the converter's LSB will have the signal polarity determined correctly. This is useful in null applications.

5.7 Digit Drive Outputs

Digit drive signals are positive going signals. The scan sequence is D_{5} to D_{1}. All positive pulses are 200 clock pulses wide, except D_{5}, which is 201 clock pulses wide.
All five digits are scanned continuously, unless an overrange condition occurs. In an overrange condition, all digit drives are held low from the final STROBE pulse until the beginning of the next reference integrate phase. The scanning sequence is then repeated. This provides a blinking visual display indication.

5.8 BCD Data Outputs

The binary coded decimal (BCD) bits $\mathrm{B}_{8}, \mathrm{~B}_{4}, \mathrm{~B}_{2}, \mathrm{~B}_{1}$ are positive-true logic signals. The data bits become active simultaneously with the digit drive signals. In an overrange condition, all data bits are at a logic " 0 " state.

6.0 TYPICAL APPLICATIONS

6.1 Component Value Selection

The integrating resistor is determined by the full-scale input voltage and the output current of the buffer used to charge the integrator capacitor. Both the buffer amplifier and the integrator have a class A output stage, with $100 \mu \mathrm{~A}$ of quiescent current. A $20 \mu \mathrm{~A}$ drive current gives negligible linearity errors. Values of $5 \mu \mathrm{~A}$ to $40 \mu \mathrm{~A}$ give good results. The exact value of an integrating resistor for a $20 \mu \mathrm{~A}$ current is easily calculated.

EQUATION 6-1:

$\mathrm{R}_{\text {INT }}=\frac{\text { Full scale voltage }}{20 \mu \mathrm{~A}}$

6.1.1 INTEGRATING CAPACITOR

The product of integrating resistor and capacitor should be selected to give the maximum voltage swing that ensures the tolerance buildup will not saturate the integrator swing (approximately 0.3 V from either supply). For $\pm 5 \mathrm{~V}$ supplies and ANALOG COMMON tied to supply ground, a $\pm 3.5 \mathrm{~V}$ to $\pm 4 \mathrm{~V}$ full-scale integrator swing is adequate. $\mathrm{A} 0.10 \mu \mathrm{~F}$ to $0.47 \mu \mathrm{~F}$ is recommended. In general, the value of $\mathrm{C}_{\mathrm{INT}}$ is given by:

EQUATION 6-2:

A very important characteristic of the integrating capacitor is that it has low dielectric absorption to prevent rollover or ratiometric errors. A good test for dielectric absorption would be to use the capacitor with the input tied to the reference. This ratiometric condition should read half scale 0.9999 , with any deviation probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

6.1.2 AUTO ZERO AND REFERENCE CAPACITORS

The size of the auto zero capacitor has some influence on the noise of the system. A large capacitor reduces the noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.
The dielectric absorption of the reference capacitor and auto zero capacitor are only important at power-on or when the circuit is recovering from an overload.

Smaller or cheaper capacitors can be used if accurate readings are not required for the first few seconds of recovery.

6.1.3 REFERENCE VOLTAGE

The analog input required to generate a full scale output is $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{REF}}$.
The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. For this reason, it is recommended that a high-quality reference be used where high-accuracy absolute measurements are being made.

6.2 Conversion Timing

6.2.1 LINE FREQUENCY REJECTION

A signal integration period at a multiple of the 60 Hz line frequency will maximize 60 Hz "line noise" rejection. A 200 kHz clock frequency will reject 60 Hz and 400 Hz noise. This corresponds to five readings per second (see Table 6-1 and Table 6-2).

TABLE 6-1: CONVERSION RATE VS. CLOCK FREQUENCY

Oscillator Frequency (kHz)	Conversion Rate (Conv./Sec.)
100	2.5
120	3
200	5
300	7.5
400	10
800	20
1200	30

TABLE 6-2: LINE FREQUENCY VS. CLOCK FREQUENCY

Oscillator Frequency (kHz)	Line Frequency Rejection		
	60Hz	50 Hz	400Hz
50.000	-	-	-
53.333	-	-	-
66.667	-	-	-
80.000	-	-	-
83.333	-	-	-
100.000	-	-	-
125.000	-	-	-
133.333	-	-	-
166.667	-	-	-
200.000	-	-	-
250.000			

The conversion rate is easily calculated:

EQUATION 6-3:
Reading $1 /$ sec $=\frac{\text { Clock Frequency }(\mathrm{Hz})}{4000}$

6.3 Power Supplies and Grounds

6.3.1 POWER SUPPLIES

The TC835 is designed to work from $\pm 5 \mathrm{~V}$ supplies. For single +5 V operation, a TC7660 can provide a -5 V supply.

6.3.2 GROUNDING

Systems should use separate digital and analog ground systems to avoid loss of accuracy.

6.4 High-Speed Operation

The maximum conversion rate of most dual-slope A/D converters is limited by the frequency response of the comparator. The comparator in this circuit follows the integrator ramp with a $3 \mu \mathrm{sec}$ delay, and at a clock frequency of 200 kHz ($5 \mu \mathrm{sec}$ period), half of the first reference integrate clock period is lost in delay. This means that the meter reading will change from 0 to 1 with a $50 \mu \mathrm{~V}$ input, 1 to 2 with $150 \mu \mathrm{~V}$, 2 to 3 at $250 \mu \mathrm{~V}$, etc. This transition at midpoint is considered desirable by most users, however, if the clock frequency is increased appreciably above 200 kHz , the instrument will flash " 1 " on noise peaks even when the input is shorted.
For many dedicated applications where the input signal is always of one polarity, the delay of the comparator need not be a limitation. Since the nonlinearity and noise do not increase substantially with frequency, clock rates of up to $\sim 1 \mathrm{MHz}$ may be used. For a fixed clock frequency, the extra count or counts caused by comparator delay will be a constant and can be subtracted out digitally.
The clock frequency may be extended above 200 kHz without this error, however, by using a low-value resistor in series with the integrating capacitor. The effect of the resistor is to introduce a small pedestal voltage onto the integrator output at the beginning of the reference integrate phase. By careful selection of the ratio between this resistor and the integrating resistor (a few tens of ohms in the recommended circuit), the comparator delay can be compensated and the maximum clock frequency extended by approximately a factor of 3. At higher frequencies, ringing and second-order breaks will cause significant nonlinearities in the first few counts of the instrument.
The minimum clock frequency is established by leakage on the auto zero and reference capacitors. With most devices, measurement cycles as long as 10 seconds give no measurable leakage error.

The clock used should be free from significant phase or frequency jitter. Several suitable low-cost oscillators are shown in Section 6.0, Typical Applications. The multiplexed output means that if the display takes significant current from the logic supply, the clock should have good PSRR.

6.5 Zero Crossing Flip-Flop

The flip flop interrogates the data once every clock pulse after the transients of the previous clock pulse and half-clock pulse have died down. False zero crossings caused by clock pulses are not recognized. Of
course, the flip flop delays the true zero crossing by up to one count in every instance. If a correction were not made, the display would always be one count too high.
Therefore, the counter is disabled for one clock pulse at the beginning of the reference integrate (de-integrate) phase. This one-count delay compensates for the delay of the zero crossing flip flop and allows the correct number to be latched into the display. Similarly, a one-count delay at the beginning of auto zero gives an overload display of 0000 instead of 0001 . No delay occurs during signal integrate, so that true ratiometric readings result.

FIGURE 6-1: 4-1/2 DIGIT ADC MULTIPLEXED COMMON ANODE LED DISPLAY

FIGURE 6-2: RC OSCILLATOR CIRCUIT

1. $f_{O}=\frac{1}{2 C\left(0.41 R_{P}+0.7 R_{1}\right)}, R_{P}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
a. If $R_{1}=R_{2}=R_{1}, F \cong 0.55 / R C$
b. If $R_{2} \gg R_{1}, f \cong 0.45 / R_{1} C$
c. If $R_{2} \ll R_{1}, f \cong 0.72 / R_{1} C$
2. Examples:
a. $f=120 \mathrm{kHz}, \mathrm{C}=420 \mathrm{pF}$
$R_{1}=R_{2} \approx 10.9 \mathrm{k} \Omega$
b. $f=120 \mathrm{kHz}, \mathrm{C}=420 \mathrm{pF}, \mathrm{R}_{2}=50 \mathrm{k} \Omega$ $R_{1}=8.93 \mathrm{k} \Omega$
c. $f=120 \mathrm{kHz}, \mathrm{C}=220 \mathrm{pF}, \mathrm{R}_{2}=5 \mathrm{k} \Omega$ $R_{1}=27.3 \mathrm{k} \Omega$

FIGURE 6-3: COMPARATOR CLOCK CIRCUITS

FIGURE 6-4: 4-1/2 DIGIT ADC WITH MULTIPLEXED COMMON CATHODE LED DISPLAY

TC835

FIGURE 6-5: TEST CIRCUIT

7.0 PACKAGING INFORMATION

7.1 Package Marking Information

Package marking data not available at this time.

7.2 Taping Forms

Component Taping Orientation for 64-Pin PQFP Devices

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
$64-$ Pin PQFP	32 mm	24 mm	250	13 in

[^0]
Component Taping Orientation for 44-Pin PQFP Devices

Standard Reel Component Orientation for TR Suffix Device

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
44-Pin PQFP	24 mm	16 mm	500	13 in

NOTE: Drawing does not represent total number of pins.

TC835

7.3 Package Dimensions

7.3 Package Dimensions (Continued)

TC835

NOTES:

SALES AND SUPPORT

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature \#) you are using.
New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

TC835

NOTES:

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, Keeloq, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.
© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

[^1]
Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

New York

150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou

Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai

Microchip Technology Consulting (Shanghai
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086

China - Hong Kong SAR

Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O'Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore

Microchip Technology Singapore Pte Ltd.
200 Middle Road
\#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan

Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 4544209895 Fax: 4544209910

France

Microchip Technology SARL
Parc d'Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 441189215869 Fax: 44-118 921-5820

[^0]: NOTE: Drawing does not represent total number of pins.

[^1]: Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro ${ }^{\oplus}$ 8-bit MCUs, KEELOQ ${ }^{\oplus}$ code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

