INTEGRATED CIRCUITS

DATA SHEET

TDA1020 12 W car radio power amplifier

Product specification
File under Integrated Circuits, IC01

November 1982

12 W car radio power amplifier

TDA1020

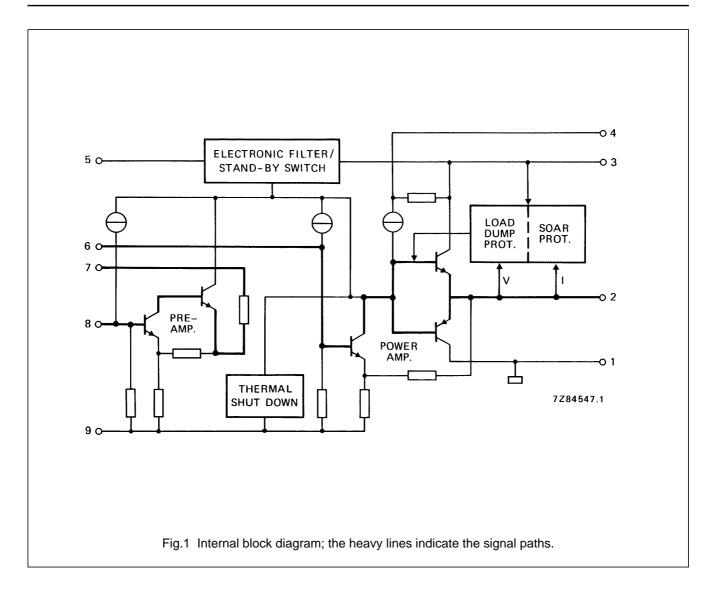
The TDA1020 is a monolithic integrated 12 W audio amplifier in a 9-lead single in-line (SIL) plastic package. The device is primarily developed as a car radio amplifier. At a supply voltage of $V_P = 14.4 \text{ V}$, an output power of 7 W can be delivered into a 4 Ω load and 12 W into 2 Ω .

To avoid interferences and car ignition signals coming from the supply lines into the IC, frequency limiting is used beyond the audio spectrum in the preamplifier and the power amplifier.

The maximum supply voltage of 18 V makes the IC also suitable for mains-fed radio receivers, tape recorders or record players. However, if the supply voltage is increased above 18 V (< 45 V), the device will not be damaged (load dump protected). Also a short-circuiting of the output to ground (a.c.) will not destroy the device. Thermal protection is built-in. As a special feature, the circuit has a low stand-by current possibility.

The TDA1020 is pin-to-pin compatible with the TDA1010.

QUICK REFERENCE DATA


Supply voltage range	V _P		6 to 18 V		
Repetitive peak output current	I_{ORM}	<	4 A		
Output power at d _{tot} = 10% (with bootstrap)					
V 444V(B 20	D	>	10 W		
$V_P = 14.4 \text{ V}; R_L = 2 \Omega$	P _o	typ.	12 W		
$V_{P} = 14.4 \text{ V}; R_{L} = 4 \Omega$	P_{o}	typ.	7 W		
$V_{P} = 14.4 \text{ V}; R_{L} = 8 \Omega$	P_{o}	typ.	3,5 W		
Output power at d _{tot} = 10% (without bootstrap)					
$V_{P} = 14.4 \text{ V}; R_{L} = 4 \Omega$	P_{o}	>	4,5 W		
Input impedance					
preamplifier (pin 8)	$ Z_i $	typ.	40 kΩ		
power amplifier (pin 6)	$ Z_i $	typ.	40 kΩ		
Total quiescent current at $V_P = 14.4 \text{ V}$	I_{tot}	typ.	30 mA		
Stand-by current	$I_{\sf sb}$	<	1 mA		
Storage temperature range	T _{stg}		−55 to + 150 °C		
Crystal temperature	T _c	max.	150 °C		

PACKAGE OUTLINE

9-lead SIL; plastic (SOT110B); SOT110-1; 1996 July 24.

12 W car radio power amplifier

TDA1020

PINNING

- 1. Negative supply (substrate)
- 2. Output power stage
- 3. Positive supply (V_P)
- 4. Bootstrap
- 5. Ripple rejection filter
- 6. Input power stage
- 7. Output preamplifier
- 8. Input preamplifier
- 9. Negative supply

12 W car radio power amplifier

TDA1020

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Limiting values in accordance with the Absolute Waximum System	(120 104)		
Supply voltage; operating (pin 3)	V_{P}	max.	18 V
Supply voltage; non-operating	V_{P}	max.	28 V
Supply voltage; load dump	V_{P}	max.	45 V
Non-repetitive peak output current	I _{OSM}	max.	6 A
Total power dissipation	see derat	ing curves Fig.2	
Storage temperature range	T_{stg}		–55 to + 150 °C
Crystal temperature	T_c	max.	150 °C
Short-circuit duration of load behind output electrolytic capacitor			
at 1 kHz sine-wave overdrive (10 dB); V = 14.4 V	tec	max.	100 hours

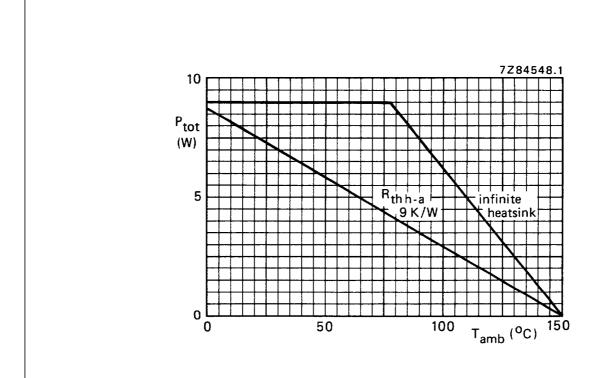


Fig.2 Power derating curves.

12 W car radio power amplifier

TDA1020

HEATSINK DESIGN EXAMPLE

The derating of 8 K/W of the encapsulation requires the following external heatsink (for sine-wave drive):

10 W in 2 Ω at $V_P = 14,4 \text{ V}$

maximum sine-wave dissipation: 5,2 W

 $T_{amb} = 60 \, ^{\circ}\text{C}$ maximum

$$R_{th\;j\text{-a}}\;=\;R_{th\;j\text{-tab}}+R_{th\;tab\text{-}h}+R_{th\;h\text{-a}}=\frac{150-60}{5,\,2}=\text{17,3 K/W}$$

Since $R_{th j-tab} + R_{th tab-h} = 8$ K/W, $R_{th h-a} = 17.3 - 8 \approx 9$ K/W.

D.C. CHARACTERISTICS

Supply voltage range (pin 3)	V_{P}		6 to 18 V
Repetitive peak output current	I _{ORM}	<	4 A
Total quiescent current			
at $V_P = 14,4 \text{ V}$	I_{tot}	typ.	30 mA
at V _P = 18 V	I _{tot}	typ.	40 mA

A.C. CHARACTERISTICS

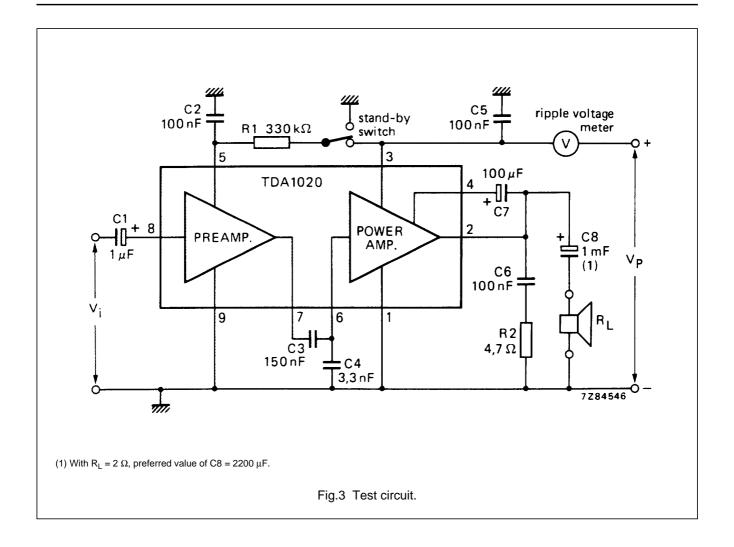
 T_{amb} = 25 °C; V_P = 14,4 V; R_L = 4 Ω ; f = 1 kHz; unless otherwise specified; see also Fig.3

Output power at d_{tot} = 10%; with bootstrap (note 1)

$V_{P} = 14.4 \text{ V}; R_{I} = 2 \Omega$	D	>	10 W
Vp = 14,4 V, RL = 2 52	P_{o}	typ.	12 W
$V_{P} = 14.4 \text{ V}; R_{I} = 4 \Omega$	D	>	6 W
νρ = 14,4 ν, Ι\L = 4 22	P _o	typ.	7 W
$V_P = 14,4 \text{ V}; R_L = 8 \Omega$	P_{o}	typ.	3,5 W
Output power at d _{tot} = 1%; with bootstrap (note 1)			
$V_P = 14,4 \text{ V}; R_L = 2 \Omega$	P_{o}	typ.	9,5 W
$V_{P} = 14,4 \text{ V}; R_{L} = 4 \Omega$	P_{o}	typ.	6 W
$V_P = 14,4 \text{ V}; R_L = 8 \Omega$	P_{o}	typ.	3 W
Output voltage (r.m.s. value)			
$R_L = 1 \text{ k}\Omega; d_{tot} = 0.5\%$	$V_{o(rms)}$	typ.	5 V
Output power at d _{tot} = 10%; without bootstrap	Po	>	4,5 W
Voltage gain			
proemplifier (note 2)	0	typ.	17,7 dB
preamplifier (note 2)	G _{v1}		16,7 to 18,7 dB
nous amplifier	0	typ.	29,5 dB
power amplifier	G_{v2}		28,5 to 30,5 dB
total amplifier	0	typ.	47 dB
total amplifier	G _{v tot}		46,2 to 48,2 dB

12 W car radio power amplifier

TDA1020

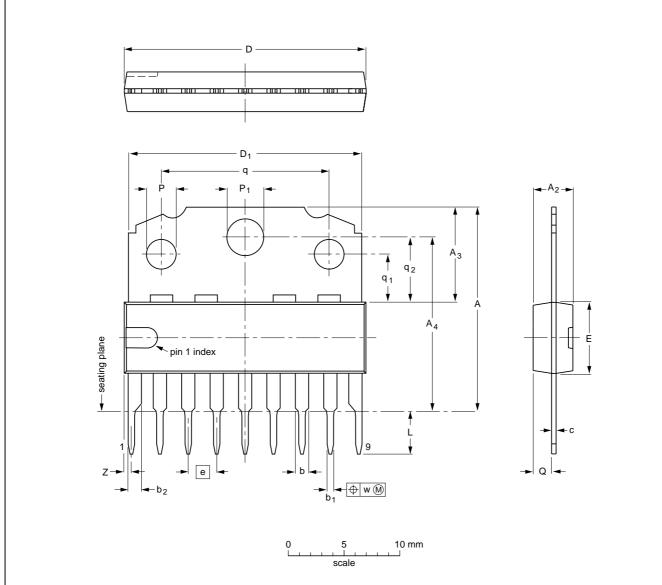

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input impedance			
	propmolifier	171	typ.	40 kΩ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	preampliner	∠ _i		28 to 52 $k\Omega$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nower emplifier	171	typ.	40 kΩ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	power amplifier	∠ _i		28 to 52 $k\Omega$
$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	Output impedance			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	proamplifier	17 1	typ.	2,0 kΩ
Output voltage (r.m.s. value) at d_{tot} = 1% $ V_{o(rms)} $	preampline	l∠ ₀ l		1,4 to 2,6 k Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	power amplifier	$ Z_0 $	typ.	50 m Ω
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Output voltage (r.m.s. value) at d _{tot} = 1%			
Frequency response B S 50Hz to 25kHz Noise output voltage (r.m.s. value; note 3) $R_S = 0\Omega \qquad V_{n(rms)} \qquad typ. \qquad 0.3\text{mV} \\ < \qquad 0.5\text{mV} \\ < \qquad 0.5\text{mV} \\ < \qquad 1.0\text{mV} \\ < $	proamplifier (note 2)	V	>	1 V
Noise output voltage (r.m.s. value; note 3) $R_S = 0 \ \Omega \qquad \qquad V_{n(rms)} \qquad \begin{array}{c} \text{typ.} & 0.3 \ \text{mV} \\ < & 0.5 \ \text{mV} \\ \\ \text{Noise output voltage (r.m.s. value; note 3)} \\ \\ R_S = 0 \ \Omega \qquad \qquad V_{n(rms)} \qquad \begin{array}{c} \text{typ.} & 0.3 \ \text{mV} \\ < & 0.5 \ \text{mV} \\ \\ \text{typ.} & 0.5 \ \text{mV} \\ \\ \text{Noise output voltage (r.m.s. value; note 3)} \\ \\ R_S = 0 \ \Omega \qquad \qquad \begin{array}{c} \text{typ.} & 0.5 \ \text{mV} \\ \\ \text{vp.} & 0.5 \ \text{mV} \\ \\ \text{Noise output voltage (r.m.s. value; note 3)} \\ \\ \text{Noise output voltage (r.m.s. value; note 3)} \\ \\ \text{Voltage of typ.} \qquad 0.5 \ \text{mV} \\ \\ \text{Ripple rejection (note 4)} \\ \\ \text{at } f = 100 \ \text{Hz; } C2 = 1 \ \mu\text{F} \\ \\ \text{at } f = 100 \ \text{Hz; } C2 = 1 \ \mu\text{F} \\ \\ \text{at } f = 1 \ \text{kHz to } 10 \ \text{kHz} \\ \\ \text{Bootstrap current at onset of clipping (pin 4)} \\ \\ R_L = 4 \ \Omega \ \text{and } 2 \ \Omega \\ \\ \text{Stand-by current (note 5)} \\ \end{array} \qquad \begin{array}{c} \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \\ \\ \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \\ \\ \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \\ \\ \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \\ \\ \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \\ \\ \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \\ \\ \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \\ \\ \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \\ \\ \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \\ \\ \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \\ \\ \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \\ \\ \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \\ \\ \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \qquad \text{Isp.} \\ \\ \text{Isp.} \qquad $	preampliner (note 2)	v o(rms)	typ.	1,5 V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Frequency response	В		50 Hz to 25 kHz
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Noise output voltage (r.m.s. value; note 3)			
$R_{S} = 8,2 \text{ k}\Omega$ $V_{n(rms)}$ $V_{n(rms$	P 0 0	V	typ.	0,3 mV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NS = 0.22	v n(rms)	<	0,5 mV
Ripple rejection (note 4) $ at f = 100 \text{ Hz}; C2 = 1 \mu\text{F} \\ at f = 1 \text{ kHz to } 10 \text{ kHz} $ RR $ RR \\ RR \\ RR \\ RR \\ RR \\ RR \\ RR$	P = 8.2 kO	V	typ.	0,5 mV
at f = 100 Hz; C2 = 1 μ F RR typ. 44 dB at f = 1 kHz to 10 kHz $_{\rm RR}$ $_{\rm S4}$ dB bootstrap current at onset of clipping (pin 4) $_{\rm RL}$ = 4 Ω and 2 Ω $_{\rm S4}$ $_{$	NS = 0,2 N22	v n(rms)	<	1,0 mV
at f = 1 kHz to 10 kHz RR ${}$	Ripple rejection (note 4)			
at f = 1 kHz to 10 kHz RR typ. 54 dB Bootstrap current at onset of clipping (pin 4) $R_L = 4 \Omega$ and 2Ω I_4 typ. 40 mA Stand-by current (note 5) I_{sb} I_{mA}	at f = 100 Hz; C2 = 1 μ F	RR	typ.	44 dB
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	at f = 1 kHz to 10 kHz	DD	>	48 dB
$R_L = 4 \ \Omega \ \text{and} \ 2 \ \Omega$ I_4 typ. 40 mA Stand-by current (note 5) I_{sb} < 1 mA	at 1 = 1 K12 to 10 K12	IXIX	typ.	54 dB
Stand-by current (note 5)	Bootstrap current at onset of clipping (pin 4)			
· · · · · · · · · · · · · · · · · · ·	$R_L = 4 \Omega$ and 2Ω	I ₄	typ.	40 mA
Crystal temperature for -3 dB gain T_c > 150 °C	Stand-by current (note 5)	$I_{\sf sb}$	<	1 mA
	Crystal temperature for -3 dB gain	T _c	>	150 °C

Notes

- 1. Measured with an ideal coupling capacitor to the speaker load.
- 2. Measured with a load resistor of 40 k Ω .
- 3. Measured according to IEC curve-A.
- 4. Maximum ripple amplitude is 2 V; input is short-circuited.
- 5. Total current when disconnecting pin 5 or short-circuited to ground (pin 9).
- 6. The tab must be electrically floating or connected to the substrate (pin 9).

12 W car radio power amplifier

TDA1020


12 W car radio power amplifier

TDA1020

PACKAGE OUTLINE

SIL9MPF: plastic single in-line medium power package with fin; 9 leads

SOT110-1

DIMENSIONS (mm are the original dimensions)

		•		•			,															
UNIT	Α	A ₂ max.	A ₃	A ₄	b	b ₁	b ₂	С	D ⁽¹⁾	D ₁	E ⁽¹⁾	е	L	Р	P ₁	Q	q	q ₁	q ₂	w	Z ⁽¹⁾ max.	
mm	18.5 17.8	3.7	8.7 8.0	15.8 15.4	1.40 1.14	0.67 0.50	1.40 1.14	0.48 0.38	21.8 21.4	21.4 20.7	6.48 6.20	2.54	3.9 3.4	2.75 2.50	3.4 3.2	1.75 1.55	15.1 14.9	4.4 4.2	5.9 5.7	0.25	1.0	

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT110-1				€	92-11-17 95-02-25

12 W car radio power amplifier

TDA1020

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (T_{stg max}). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.