Signetics

Linear Products

DESCRIPTION

The TDA1540 is a monolithic integrated 14-bit digital-to-analog converter (DAC). It incorporates a 14-bit input shift register with output <u>latches</u>, binary weighted current sources with switches and a reference source.

The IC features an improved switch circuitry which eliminates the need for a deglitcher circuit at the output. This results in a signal-to-noise ratio of typical 85dB in the audio band.

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
28-Pin Plastic DIP (SOT-117BE)	0 to + 70°C	TDA1540PN
28-Pin Plastic SO (SOT-117BE)	0 to + 70°C	TDA1540D

TDA1540TD, PN 14-Bit DAC (Serial Output)

Product Specification

FEATURES

to 70°C

• Serial data input

• Sound reproduction

• Recording systems

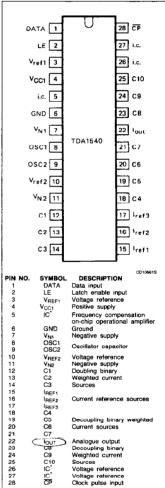
• Graphic display systems

• Electron-beam recording

APPLICATIONS

• Clock frequency 12MHz

• TTL compatible input


• Signal-to-noise ratio 85dB

• On-chip current reference

Inherent monotonicity from -25°C

033018

PIN CONFIGURATION

November 14, 1986

5-221

853-0969 86554

Product Specification

14-Bit DAC (Serial Output)

TDA1540TD, PN ker Bab inpat cade lin.

ABSOLUTE MAXIMUM RATINGS

SYMBOL	DESCRIPTION	RATING	UNIT
	Supply voltages with respect to GND (Pin 6)		
V _{CC1}	at Pin 4	MAX. 12	V I
VNI	at Pin 7	MAX12	V I
V _{N2}	at Pin 11	MAX20	v
VP1 - VN2	at Pin 4 with respect to Pin 11	MAX. 32	V
$V_{N1} - V_{N2}$	at Pin 7 with respect to Pin 11	-1 to +20	v
Ртот	Total power dissipation	Max. 600	mW
T _{STG}	Storage temperature range	-65 to +150	°C
TA	Operating ambient temperature range	-25 to +80	°C

SYMBOL	PARAMETER		LIMITS		
		Min	Тур	Max	UNIT
Supply voltages	with respect to GND (Pin 6)			• • •	
V _{CC1}	at Pin 4	3	5	7	v
VN1	at Pin 7	-4.7 -16.5	-5 -17	-7 -18	l v
V _{N2}	at Pin 11	- 10.5	-17	-10	v
Supply currents				1741	<u>)</u>
	at Pin 4 ¹ at Pin 7		12 -20	-24	mA mA
IN1 IN2	at Pin 11		-11	-13	mA
Power dissipatio	n	I		51	
Ртот	Total power dissipation		350	410	mW
Temperature	· · · · · · · · · · · · · · · · · · ·				
T _A	Operating ambient temperature range	-20		+ 70	°C
Data input DAT/	A (Pin 1)	-			
ViH	Input voltage HIGH	2.0		7.0	v
VIL	Input voltage LOW	0		0.8	v
hн	Input current HIGH at VIH			50	μA
IIL	Input current LOW at VIL			0.2	mA
BRMAX	Maximum input bit rate	12			Mbits/
Latch enable in Clock input CP					
VIH	Input voltage HIGH	2.0		7.0	v
VIL	Input voltage LOW	0		0.8	v
l _H	Input current HIGH at VIH			50	μA
-I _{IL}	Input current LOW at VIL			0.2	mA
f _{CPMAX}	Maximum clock frequency	12			MHz
Oscillator (Pins	8 and 9)				
fosc	Oscillator frequency at C8-9 = 820pF	100	160	200	kHz

November 14, 1986

5-222

14-Bit DAC (Serial Output)

TDA1540TD, PN

DC ELECTRICAL CHARACTERISTICS (Continued) T_A = 25°C at typical supply voltages unless otherwise specified.

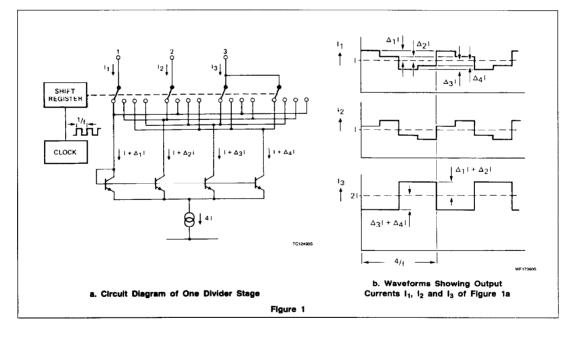
SYMBOL	PARAMETER	LIMITS			
		Min	Тур	Max	UNIT
Analog output	louт (Pin 22)				
Voc	Output voltage compliance	-10		(+10)	mV
I _{FS}	Full-scale current	3.8	4.0	4.2	mA
± I _{ZS}	Zero-scale current			100	nA
TC _{FS}	Full-scale temperature coefficient $T_A = -20$ to $+70^{\circ}C$		$\pm 30 \times 10^{-6}$		°C ⁻¹
tcs (Settling time to ± 1/2 LSB all bits on or off		0.5		μs
S/N	Signal-to-noise ratio ²	80	85		dB

1. When the output current is ½1FS (½ full-scale output current). 2. Signal-to-noise ratio within 20Hz and 00HH and 00HH.

rated at a sample rate of 44kHz

FUNCTIONAL DESCRIPTION

The binary weighted current sources are obtained by a combination of a passive divider and a time division concept. Figure 1a gives the diagram of one divider stage. The total emitter current 4 1 of the passive divider is divided into four more or less equal output currents.

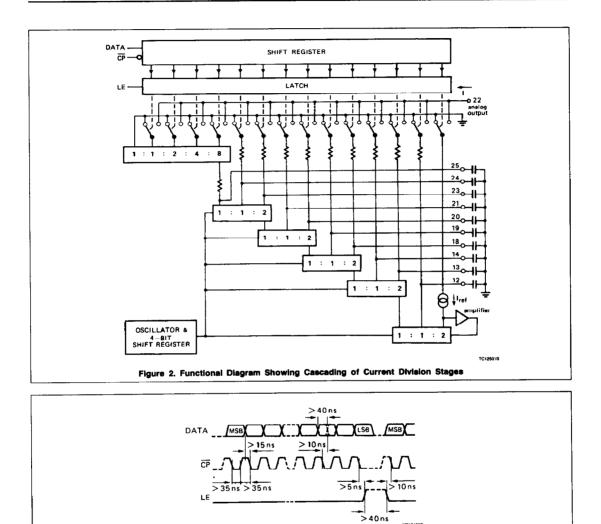

The output currents of the passive divider are now interchanged during equal time intervals generated by means of a shift register. The

average output currents are exactly equal as a result of this operation. A ripple on the output current, caused by a mismatch of the passive divider, is filtered by an AC low-pass filter, requiring an external filter capacitor.

The outputs of the dividers are combined to obtain the output currents I (\overline{l}_1), I(\overline{l}_2) and 2I (\overline{l}_3) (see Figure 1b). The current of the most significant bit is generated by an on-chip reference source. A binary weighted current network is formed by cascading the current division stages (see Figure 2).

The interchanging pulses are generated by an on-chip oscillator and a 4-bit shift register. The binary currents are switched to the cur-rent output (Pin 22) via diode-transistor switching stages; therefore, the voltage on the output pin must be $0V \pm 10mV$. The output current can be converted into a voltage by means of a summing amplifier.

Figure 3 represents the data input format, and an application circuit is given in Figure 4.


November 14, 1986

5-223

Product Specification

14-Bit DAC (Serial Output)

TDA1540TD, PN

November 14, 1986

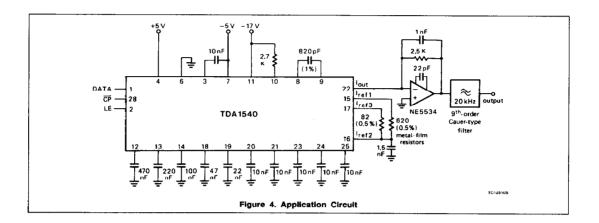

5-224

Figure 3. Format of Input Signals

Product Specification

14-Bit DAC (Serial Output)

TDA1540TD, PN

November 14, 1986

5-225

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com