

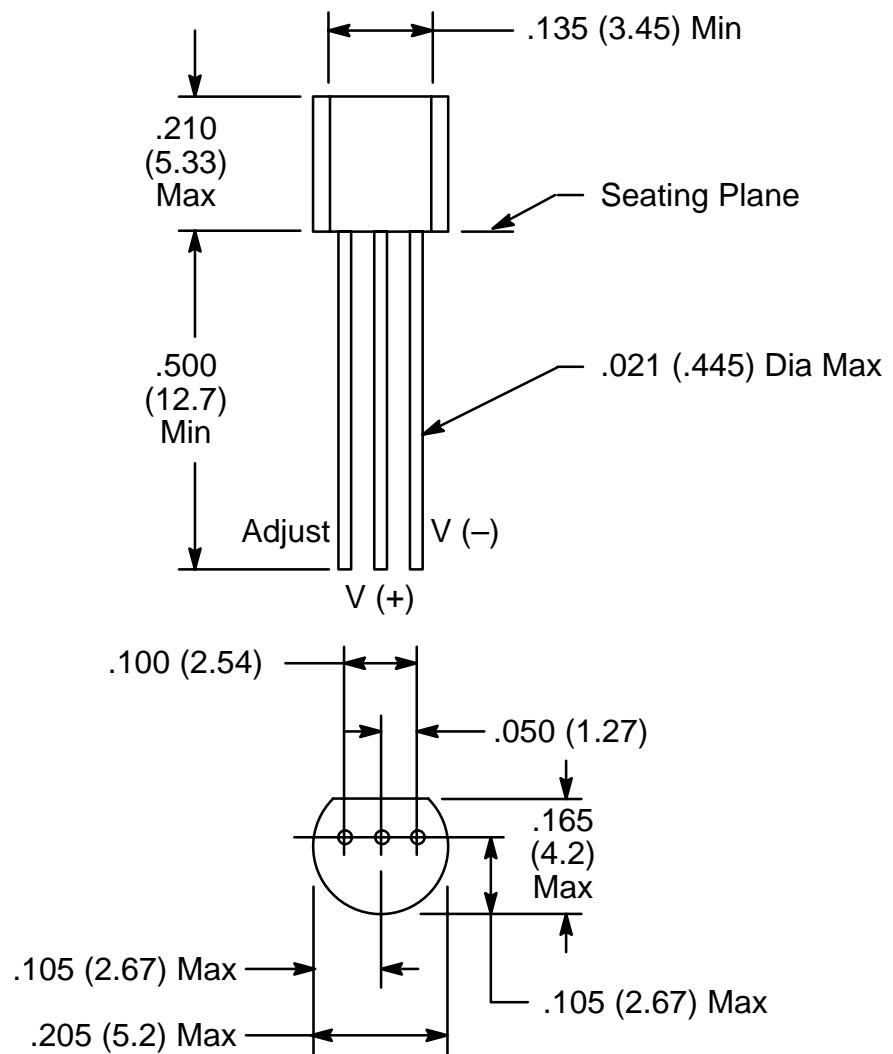
NTE952 Integrated Circuit Precision 2.5V Shunt

Description:

The NTE952 integrated circuit is a precision 2.5V shunt regulator diode. This monolithic IC voltage reference operates as a low temperature coefficient 2.5V zener with 0.2Ω dynamic impedance. This device is rated for operation over a 0° to $+70^\circ\text{C}$ temperature range and is available in a TO-92 package.

Features:

- Low Temperature Coefficient
- Wide Operating Current of $300\mu\text{A}$ to 10mA
- 0.2Ω Dynamic Impedance
- $\pm 1\%$ Initial Tolerance Available
- Guaranteed Temperature Stability
- Easily Trimmed for Minimum Temperature Drift
- Fast Turn-On


Absolute Maximum Ratings:

Reverse Current, I_R	15mA
Forward Current, I_F	10mA
Operating Temperature Range, T_{opr}	0° to $+70^\circ\text{C}$
Storage Temperature Range, T_{stg}	-60° to $+150^\circ\text{C}$
Lead Temperature (During Soldering, 10sec), T_L	$+300^\circ\text{C}$

Electrical Characteristics: ($0^\circ \leq T_A \leq +70^\circ\text{C}$, Note 1 unless otherwise specified)

Parameter	Test Conditions	Min	Typ	Max	Unit
Reverse Breakdown Voltage	$T_A = +25^\circ\text{C}$, $I_R = 1\text{mA}$	2.390	2.490	2.590	V
Reverse Breakdown Change with Current	$T_A = +25^\circ\text{C}$, $400\mu\text{A} \leq I_R \leq 10\text{mA}$	—	2.6	10	mV
Reverse Dynamic Impedance	$T_A = 25^\circ\text{C}$, $I_R = 1\text{mA}$	—	0.2	1	Ω
Temperature Stability	V_R Adjusted to 2.490V, $I_R = 1\text{mA}$	—	1.8	6	mV
Reverse Breakdown Change with Current	$400\mu\text{A} \leq I_R \leq 10\text{mA}$	—	3	12	mV
Reverse Dynamic Impedance	$I_R = 1\text{mA}$	—	0.4	1.4	Ω
Long Term Stability	$T_A = +25^\circ\text{C} \pm 0.1^\circ\text{C}$, $I_R = 1\text{mA}$	—	—	20	ppm

Note 1 Unless otherwise specified the NTE952 is specified from $0^\circ\text{C} \leq T_A \leq +70^\circ\text{C}$. The maximum junction temperature is 100°C . For elevated junction temperature the derating is based on 180°C/W junction to ambient with 0.4" leads from a PC board and 160°C/W junction to ambient with 0.125" lead length to a PC board.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com