

NTE957
Integrated Circuit
3-Terminal Adjustable Negative
Voltage Regulator

Description:

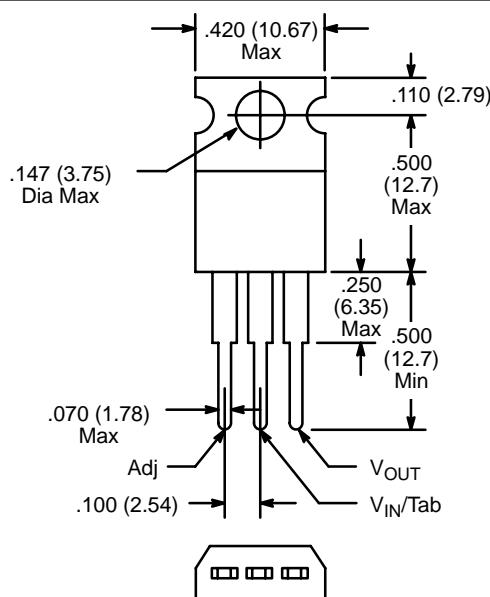
The NTE957 is an adjustable 3-terminal negative voltage regulator in a TO220 type package capable of supplying in excess of -1.5A over a -1.2V to -37V output range. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the NTE957 features internal current limiting, thermal shutdown, and safe-area compensation, making this device virtually blowout-proof against overloads.

The NTE957 serves a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The NTE957 is the ideal complement to the NTE956 adjustable positive regulator.

Features:

- Output Voltage Adjustable from -1.2V to -37V
- Guaranteed 1.5A Output Current
- Line Regulation Typically $0.01\%/\text{V}$
- Load Regulation Typically 0.3%
- Excellent Thermal Regulation: $0.002\%/\text{W}$
- 77dB Ripple Rejection
- Temperature-Independent Current Limit
- Internal Thermal Overload Protection
- 100% Electrical Burn-In
- Eliminates the Need to Stock Many Voltages

Absolute Maximum Ratings:


Power Dissipation, P_D	Internally Limited
Input-Output Voltage Differential, $V_I - V_O$	40V
Operating Junction Temperature Range, T_J	0° to $+125^\circ\text{C}$
Storage Temperature Range, T_{stg}	-65° to $+150^\circ\text{C}$
Typical Thermal Resistance, Junction-to-Case, R_{thJC}	$4^\circ\text{C}/\text{W}$
Lead Temperature (During Soldering, 10sec), T_L	$+300^\circ\text{C}$

Electrical Characteristics: ($0^\circ \leq T_J \leq +125^\circ\text{C}$, $V_{IN}-V_{OUT} = 5\text{V}$, $I_O = 500\text{mA}$, $I_{MAX} = 1.5\text{A}$, Note 1 unless otherwise specified)

Parameter	Symbol	Test Conditions		Min	Typ	Max	Unit	
Line Regulation	Reg _{line}	$T_A = +25^\circ\text{C}$, $3\text{V} \leq (V_{IN}-V_{OUT}) \leq 40\text{V}$, Note 2		—	0.01	0.04	%/V	
		$3\text{V} \leq (V_{IN}-V_{OUT}) \leq 40\text{V}$		—	0.02	0.07	%/V	
Load Regulation	Reg _{load}	$T_A = +25^\circ\text{C}$, $10\text{mA} \leq I_O \leq I_{MAX}$, Note 2		$V_{OUT} \leq 5\text{V}$	—	15	50	mV
				$V_{OUT} \geq 5\text{V}$	—	0.3	1.0	%
		$10\text{mA} \leq I_O \leq 1_{MAX}$, Note 2		$V_{OUT} \leq 5\text{V}$	—	20	70	mV
				$V_{OUT} \geq 5\text{V}$	—	0.3	1.5	%
Thermal Regulation		$T_A = +25^\circ\text{C}$, 20ms Pulse		—	0.003	0.04	%/W	
Adjustment Pin Current	I _{Adj}			—	65	100	μA	
Adjustment Pin Current Change	ΔI _{Adj}	$10\text{mA} \leq I_L \leq I_{MAX}$, $2.5\text{V} \leq (V_{IN}-V_{OUT}) \leq 40\text{V}$, $T_A = +25^\circ\text{C}$		—	2	5	μA	
Reference Voltage	V _{ref}	$T_A = +25^\circ\text{C}$		—1.213	—1.250	—1.287	V	
		$3\text{V} \leq (V_{IN}-V_{OUT}) \leq 40\text{V}$, $10\text{mA} \leq I_O \leq 1_{MAX}$, $P \leq P_{MAX}$		—1.200	—1.250	—1.300	V	
Temperature Stability	T _S	$0^\circ \leq T_J \leq +125^\circ\text{C}$		—	0.6	—	%	
Minimum Load Current	I _{Lmin}	$(V_{IN}-V_{OUT}) \leq 40\text{V}$		—	2.5	10	mA	
		$(V_{IN}-V_{OUT}) \leq 10\text{V}$		—	1.5	6.0	mA	
Maximum Output Current Limit	I _{max}	$V_{IN}-V_{OUT} \leq 15\text{V}$		1.5	2.2	—	A	
		$V_{IN}-V_{OUT} = 40\text{V}$		—	0.4	—	A	
RMS Output Noise, % of V _{OUT}	N	$T_A = +25^\circ\text{C}$, $10\text{Hz} \leq f \leq 10\text{kHz}$		—	0.003	—	%	
Ripple Rejection Ratio	RR	$V_{OUT} = 10\text{V}$, $f = 120\text{Hz}$		—	60	—	dB	
		$C_{ADJ} = 10\mu\text{F}$		66	77	—	dB	
Long Term Stability	S	$T_A = +125^\circ\text{C}$, 1000 Hours		—	0.3	1.0	%	

Note 1. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 20W.

Note 2. Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com