
LOW VOLTAGE TELEPHONE TRANSMISSION CIRCUIT WITH DIALLER INTERFACE

DESCRIPTION

The UTC TEA1062N / TEA1062AN is a bipolar integrated circuit performing all speech and line interface function, required in the fully electronic telephone sets. It performs electronic switching between dialing speech. The circuit is able to operate down to D.C. line voltage of 1.6V (with reduced performance) to facilitate the use of more telephone sets in parallel.

FEATURES

- * Low d.c. line voltage; operates down to 1.6V (excluding polarity guard).
- *Voltage regulator with adjustment static resistance.
- *Provides supply with limited current for external
- *Symmetrical high-impedance inputs (64kΩ) for dynamic, magnetic or piezoelectric microphones.
- *Asymmetrical high-impedance inputs (32k Ω) for electret microphones.
- *DTMF signal input with confidence tone.

- *Mute input for pulse or DTMF dialing.
- *Receivering amplifier for several types of earphones.
- *Large amplification setting range on microphone and earpiece amplifiers.
- *Line loss compensation facility, line current depedant (microphone and earpiece amplifiers).
- *Gain control adaptable to exchange supply.
- *Possibility to adjust the d.c. line voltage.

QUICK REFERENCE DATA

Line voltage at line=15mA	VLN	typ. 3.8 V
Line current operating range[pin1]		
normal operation	lline	11 to 140 mA
with reduced performance	lline	1 to 11 mA
Internal supply current	Icc	typ. 1mA
Supply current for peripherials		
at Iline=15 mA MUTE input LOW(1062 is HIGH)		
VCC>2.2V	lp	typ. 1.8mA
VCC>2.8V	lр	typ. 0.7mA
Voltage amplification range		- CP-T-11
microphone amplifier	AVD	44 to 52 dB
receiving amplififer	AVD	20 to 39 dB
Line loss compansation	10.71	1
Amplification control range	AVD	typ. 6 dB
Exchange supply voltage range	Vexch	36 to 60V
Exchange feeding bridge resistance range	Rexch	400 to 1000 Ω
Operating ambient temperature range	Tamh	-25 to +75°C

UTC

UNISONIC TECHNOLOGIES CO., LTD.

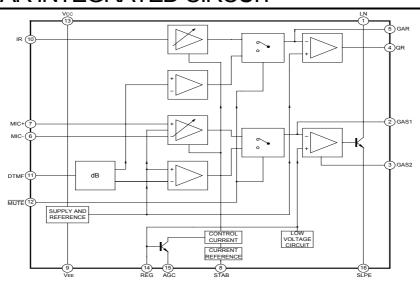


Fig.1 Block Diagram

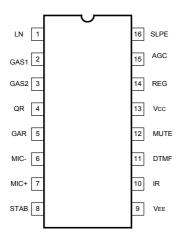


Fig.2 PIN CONFIGURATIONS

1 LN positive line terminal GAS1 gain adjustment; transmitting amplifier GAS2 gain adjustment; transmitting amplifier non-inverting output, receiving amplifier QR GAR gain adjustment; receiving amplifier MICinverting microphone input MIC+ on-inverting microphone input STAB current stabilizer negative line terminal 10 IR receiving amplifier input DTMF dual-tone multi-frequency input 12 MUTE mute input 13 Vcc positive supply decoupling 14 REG voltage regulator decoupling 15 AGC automatic gain control input 16 SLPE slope (DC resistance) adjustment

ABSOLUTE MAXIMUM RATINGS

PARAMETER	TEST CONDITIONS	SYMBOL	MIN	MAX	UNIT
Positive Continuous Line Voltage		VLN		12	V
Repetitive Line Voltage During					
Switch-On Or Line Interruption		VLN		13.2	V
Repetitive Peak Line Voltage for a 1 ms Pulse/5s	R10=13Ω				
	R9=20Ω				
	(see Fig.15)	VLN		28	V
Line Current (1)	R9=20Ω	Iline		140	mA
Voltage on All Other Pins		Vi		VCC+0.7	V
		-Vi		0.7	V
Total Power Dissipation (2)	R9=20Ω	Ptot		640	mW
Storage Temperature Range		Tstg	-40	+125	°C
Operating Ambient Temperature Range		Tamb	-25	+75	°C
Junction Temperature		Tj		+125	°C

^{1.} Mostly dependent on the maximum required Tamb and the voltage between LN and SLPE (see Figs 6).

THERMAL RESISTANCE

From junction to ambient in free air Rth j-a = 75K/W

ELECTRICAL CHARACTERISTICS (Iline=11 to 140mA;VEE=0V;f=800Hz;Tamb=25°C; unless otherwise specified)

PARAMETER	TEST CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Supply; LN and VCC(pins 1 and 13)						
Voltage Drop Over Circuit,						
between LN and VEE	MIC inputs open					
	Iline=1mA	VLN		1.6		V
	Iline=4mA	VLN		1.9		V
	Iline=15mA	VLN	3.55	4.0	4.25	V
	Iline=100mA	VLN	4.9	5.7	6.5	V
	Iline=140mA	VLN			7.5	V
Variation with Temperature	Iline=15mA	ΔV LN/ ΔT		-0.3		mV/K
Voltage Drop Over Circuit,						
between LN and VEE with	Iline=15mA					
External Resistor Rva	RVA(LN to REG)			3.5		V
	=68kΩ					
	Iline=15mA					
	RVA(REG to SLPE)			4.5		V
	=39kΩ					
Supply Current	Vcc=2.8V	Icc		0.9	1.35	mA
Supply Voltage Available for						
Peripheral Circuitry	Iline=15mA					
TEA1062N	lp=1.2mA; MUTE=HIGH	Vcc	2.2	2.7		V
	lp=0mA;MUTE=HIGH	Vcc		3.4		V
TEA1062AN	lp=1.2mA; MUTE=LOW	Vcc	2.2	2.7		V
	lp=0mA;MUTE=LOW	Vcc		3.4		V

^{2.} Calculated for the maximum ambient temperature specified Tamb=75°C and a maximum junction temperature of

ELECTRICAL CHARACTERISTICS (continued)

, , , , , , , , , , , , , , , , , , , ,					
TEST CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Microphone inputs MIC+ and MIC- (pins 6 and 7) Input impedance (differential)					
	Zi		64		kΩ
	Zi		32		kΩ
	kcmr		82		dB
Iline=15mA					
R7=68kΩ	Gv	50.5	52.0	53.5	dB
w.r.t.800Hz	ΔG vf		+-0.2		dB
· · · · · · · · · · · · · · · · · · ·					
	ΔGvT		+-0.2		dB
(pin 11)		1	1	1	1
	Zi		20.7		kΩ
R7=68kΩ	Gv	24	25.5	27	dB
w.r.t.800Hz	ΔG vf		+-0.2		dB
w.r.t.25°C					
Iline=50mA	ΔG vT		+-0.2		dB
ins 2 and 3)	•				
	ΔGv	-8		0	dB
Iline=15mA					
THD=10%	VLN(rms)	1.7	2.3		V
Iline=4mA					
THD=10%	VLN(rms)		0.8		V
Iline=15mA;					
· · · · · · · · · · · · · · · · · · ·					
200Ω between					
,					
weighted	VNO(rms)		-69		dBmp
Receiving Amplifier Input IR (pin 10)					
				kΩ	
Receiving Amplifier Output QR (pin 4) Output Impedance Zo 4 Ω					
	Zo		4		Ω
lline=15mA;					
RL(from pin 9 to					
pin 4)=300Ω	Gv	29.5	31	32.5	dB
	Iline=15mA R7=68kΩ w.r.t.800Hz w.r.t.25°C without R6; Iline=50mA (pin 11) Iline=15mA R7=68kΩ w.r.t.25°C Iline=50mA ins 2 and 3) Iline=15mA THD=10% Iline=4mA THD=10% Iline=4mA THD=10% Iline=15mA; R7=68kΩ; 200Ω between MIC- and MIC+; psophometrically weighted Iline=15mA;	Zi Zi KCMR Iline=15mA R7=68kΩ Gv W.r.t.800Hz ΔGvf W.r.t.25°C without R6; Iline=50mA ΔGvT Iline=15mA R7=68kΩ Gv W.r.t.25°C Iline=50mA ΔGvf W.r.t.25°C Iline=50mA ΔGvT AGvf W.r.t.25°C Iline=50mA ΔGvT Iline=15mA THD=10% VLN(rms) Iline=4mA THD=10% VLN(rms) Iline=15mA; R7=68kΩ; 200Ω between MIC- and MIC+; psophometrically weighted VNO(rms) Iline=15mA; RL(from pin 9 to Iline=15mA; RL(from pin 9 to Iline=15mA; RL(from pin 9 to Iline=15mA; Iline=15mA; Iline=15mA; Iline=15mA; Iline=15mA; RL(from pin 9 to Iline=15mA; Ili	Izi	Zi 64	Izi 64

ELECTRICAL CHARACTERISTICS (continued)

ELECTRICAL CHARACTERISTICS (continued)							
PARAMETER	TEST CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT	
Gain Variation with Frequency							
at f=300Hz and f=3400Hz	w.r.t.800Hz	ΔG vf		±0.2		dB	
Gain Variation with Temperature							
at-25°C and +75°C	w.r.t.25°C						
	without R6						
	lline=50mA	ΔG vT		+-0.2		dB	
Output Voltage	sinwave drive;						
	lp=0mA;THD=2%						
	R4=100kΩ						
	lline=15mA						
	RL=150Ω	Vo(rms)	0.22	0.33		V	
	RL=450Ω	Vo(rms)	0.3	0.48		V	
Output Voltage	THD=10%						
	R4=100kΩ						
	RL=150Ω						
	lline=4mA	Vo(rms)		15		mV	
Noise Output Voltage	lline=15mA						
	R4=100kΩ						
	IR open-circuit						
	psophometrically						
	weighted						
	RL=300Ω	VNO(rms)		50		μV	
Gain adjustment GAR (pin 5)	,						
Gain Variation of Receiving							
Amplifier Achievable by							
Varying		ΔGv	-11		0	dB	
R4 between GAR and QR							
Mute Input (pin 12)	,						
Input Voltage(HIGH)		VIH	1.5		Vcc	V	
Input Voltage(LOW)		VIL			0.3	V	
Input Current		IMUTE		8	15	μА	
Reduction of Gain							
MIC+ or MIC- to QR	MUTE=LOW	ΔGv		70		dB	
Voltage Gain from DTMF to QR	MUTE=LOW						
	R4=100kΩ						
	RL=300Ω	Gv		-19		dB	
Automatic Gain Control Input AGC (pin 15)							
Controlling the Gain from IR to QR							
and the Gain from MIC+/MIC-							
to LN;R6 between AGC and VEE	R6=110kΩ						
Gain Control Range	Iline=70mA	ΔGv		-5.8		dB	
Highest Line Current							
for Maximum Gain		lline		23		mA	
Minimum Line Current							
for Minimum Gain		lline		61		mA	

FUNCTIONAL DESCRIPTION

Supply: VCC, LN, SLPE, REG and STAB

Power for the UTC TEA1062N/TEA1062AN and its peripheral circuits is usually obtained from the telephone line. The IC supply voltage is derived from the line via a dropping resistor and regulated by the UTC TEA1062N/TEA1062AN, The supply voltage Vcc may also be used to supply external circuits e.g. dialling and control circuits. Decoupling of the supply voltage is performed by a capacitor between Vcc and VEE while the internal voltage regulator is decoupled by a capacitor between REG and VEE. The DC current drawn by the device will vary in accordance with varying values of the exchange voltage(Vexch), the feeding bridge resistance(Rexch) and the DC resistance the telephone line(Rline). The UTC TEA1062N/TEA1062AN has an internal current stabilizer operating at a level determined by a 3.6k Ω resistor connected between STAB and VEE(see Fig.8). When the line current(line) is more than 0.5 mA greater than the sum of the IC supply current (Icc) and the current drawn by the peripheral circuitry connected to VCC(Ip) the excess current is shunted to VEE via LN. The regulated voltage on the line terminal(VLN) can be calculated as:

 $\label{eq:VLN=Vref+ISLPE*R9 or;} $$V_{N}=V_{ref}+[(I_{line}-I_{CC}-0.5^*10^{-3}A)-I_{p}]^*R9$$

where:Vref is an internally generated temperature compensated reference voltage of 3.7V and R9 is an external resistor connected between SLPE and VEE. In normal use the value of R9 would be 20Ω. Changing the value of R9 will also affect microphone gain, DTMF gain,gain control characteristics, side tone level, maxmimum output swing on LN and the DC characteristics (especially at the lower voltages). Under normal conditions, when Islpe>=IcC+0.5mA +Ip, the static behaviour of the circuit is that of a 3.7V regulator diode with an internal resistance equal to that of R9.In the audio frequency range the dynamic impedance is largely determined by R1.Fig.3 shows the equivalent impedance of the circuit.

Microphone inputs(MIC+ and MIC-) and gain pins (GAS1 and GAS2)

The UTC TEA1062N/TEA1062AN has symmetrical inputs. Its input impedance is $64k\Omega$ ($2^*32k\Omega$) and its voltage gain is typically 52 dB (when R7=68k Ω .see Fig.13). Dynamic, magnetic, piezoelectric or electret

(with built-in FET source followers) can be used. Microphone arrangements are illustrated in Fig.10. The gain of the microphone amplifier can be adjusted between 44dB and 52dB to suit the sensitivity of the transducer in use. The gain is proportional to the value of R7 which is connected between GAS1 and GAS2. Stability is ensured by the external capacitors, C6 connected between GAS1 and SLPE and C8 connected between GAS1 and VEE. The value of C6 is 100pF but this may be increased to obtain a first-order low-pass filter. The value of C8 is 10 times the value of C6. The cut-off frequency corresponds to the time constant R7*C6.

Mute input (MUTE)

A LOW(UTC TEA1062N is HIGH) level at MUTE enables DTMF input and inhibites the microphone inputs and the receiving amplifier inputs; a HIGH(UTC TEA1062N is LOW) level or an open circuit does the reverse. Switching the mute input will cause negligible clickis at the telephone outputs and on the line. In case the line current drops below 6mA(parallal opration of more sets) the circuit is always in speech condition independant of the DC level applied to the MUTE input.

Dual-tone multi-frequency input (DTMF)

When the DTMF input is enabled dialling tones may be sent onto the line. The voltage gain from DTMF to LN is typically 25.5dB(when R7=68k Ω) and varies with R7 in the same way as the microphone gain. The signalling tones can be heard in the earpiece at a low level(confidence tone).

Receiving amplifier (IR,QR and GAR)

The receiving amplifier has one input (IR) and a non-inverting output (QR). Earpiece arrangements are illustrated in Fig.11. The IR to QR gain is typically 31dB (when R4=100k Ω). It can be adjusted between 20 and 31dB to match the sensitivity of the transducer in use. The gain is set with the value of R4 which is connected between GAR and QR.The overall receive gain, between LN and QR, is calculated by substracting the anti-sidetone network attenuation (32dB) from the amplifier gain. Two external capacitors, C4 and C7, ensure stability. C4 is normally 100pF and C7 is 10 times the value of C4. The value of C4 may be increased to obtain a first-order low-pass filter.The

cut-off frequency will depend on the time constant R4*C4. The output voltage of the receiving amplifier is specified for continuous-wave drive. The maximum output voltage will be higher under speech conditions where the peak to RMS ratio is higher.

Automatic gain control input (AGC)

Automatic line loss compensation is achieved by connecting a resistor(R6) between AGC and VEE. The automatic gain control varies the gain of the microphone amplifier and the receiving amplifier in accordance with the DC line current. The control range is 5.8dB which corresponds to a line length of 5km for a 0.5mm diameter twisted pair copper cable with a DC resistance of $176\Omega/km$ and average attenuation of 1.2dB/km. Resistor R6 should be chosen inaccordance with the exchange supply voltage and its feeding bridge resistance(see Fig.12 and Table 1). The ratio of start and stop currents of the AGC curve is independent of the value of R6. If no automatic line loss compensation is required the AGC may be left open-circuit. The amplifier, in this condition, will give their maximum specified gain.

Side-tone suppression

The anti-sidetone network, R1//Zline, R2, R3, R8, R9 and Zbal,(see Fig.4) suppresses the transmitted signal in the earpiece. Compensation is maximum when the following conditions are fulfilled:

(a) R9*R2=R1[R3+(R8//Zbal)];

(b) [Zbal/(Zbal+R8)]=[Zline/(Zline+R1)]; If fixed values are chosen for R1, R2, R3 and R9 then condition(a) will always be fullfilled when R8/Zball 《R3. To obtain optimum side-tone suppression condition(b) has to be fulfilled which results in:

 $Z_{bal}=(R8/R1)$ $Z_{line}=k^*Z_{line}$ where k is a scale factor; K=(R8/R1).

The scale factor (k), dependent on the value of R8, is chosen to meet following criteria:

- (a) Compatibility with a standard capacitor from the E6 or E12 range for Zbal
- (b) | Zbal//R8 | 《R3 fulfilling condition (a) and thus ensuring correct anti-sidetone bridge operation.
- (c) | Zbal+R8 | » R9 to avoid influencing the transmitter gain.

In practice Z_{line} varies considerably with the type and length. The value chosen for Z_{bal} should therefore be for an average line length thus giving optimum setting for short or long lines.

Example

The balance impedance Zbal at which the optimum suppression is present can be calculated by: Suppose Zline = $210\Omega+(1265\Omega//140nF)$ representing a 5km line of 0.5 mm diameter, copper, twisted pair cable matched to $600\Omega(176\Omega/\text{km};38\text{nF/km})$. When k=0.64 then R8=390 Ω ,Zbal=130 Ω +(820 Ω //220nF). At line currents below 9mA the internal reference voltage is automatically adjusted to a lower value(typically 1.6V at 1mA) This means that more sets can be operated in parallel with DC line voltages (excluding the polarity guard) down to an absolute minimum voltage of 1.6V. With line currents below 9mA the circuit has limited sending and receiving levels. The internal reference voltage can be adjusted by means of an external resistor(RVA). This resistor when connected between LN and REG will decrease the internal reference voltage and when connected between REG and SLPE will increase the internal reference voltage. Current(Ip) available from Vcc for peripheral circuits depends on the external components used. Fig.9 shows this current for Vcc > 2.2V. If MUTE is LOW (1062 is HIGH) when the receiving amplifier is driven the available current is further reduced. Current availability can be increased by connecting the supply IC(1081) in parallel with R1, as shown in Fig.16(c), or, by increasing the DC line voltage by means of an external resistor(RvA) connected between REG and SI PF

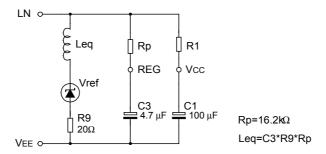


Fig.3 Equivalent impedance circuit

The anti-sidetone network for the UTCTEA1062N/TEA1062AN family shown in Fig.4 attenuates the signl received from the line by 32 dB before it enters the receiving amplifier. The attenuation is almost constant over the whole audio frequency range. Fig.5 shows a convertional Wheatstone bridge anti-sidetone circuit that can be used as an alternative. Both bridge types can be used with either resistive or complex set impedances.

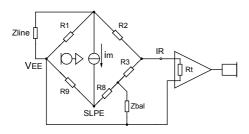


Fig 4 Equivalent circuit of UTC TEA1062N/TEA1062AN anti-sidetone bridge

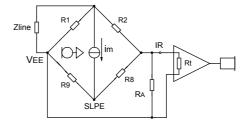


Fig 5 Equivalent circuit of an anti-sidetone network in a wheatstone bridge configuration

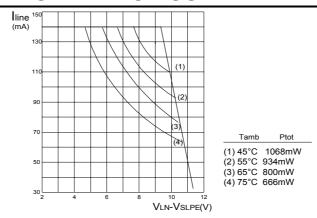


Fig.6 UTC TEA1062N/TEA1062AN safe operating area

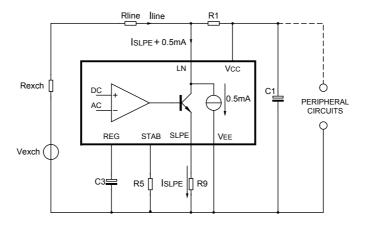
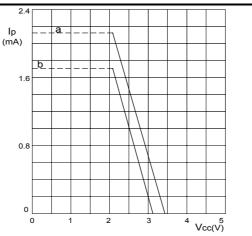



Fig.8 Supply arrangement

(a) lp=2.1mA (b) lp=1.7mA Iline=15mA at VLN=4V R1=620 Ω and R9=20 Ω

Fig.9 Typical current Ip available from Vcc peripheral circuitry with Vcc>=2.2V.

curve (a) is valid when the receiving amplifier is not driven or when MUTE =LOW(UTC TEA1062N is HIGH) .curve(b) is valid when MUTE=HIGH(UTC TEA1062N is LOW) and the receiving amplifier is driven; Vo(rms)=150mV, $RL=150\Omega$. The supply possibilities can be increased simply by setting the voltage drop over the circuit VLN to a high value by means of resistor RVA connected between REG and SLPE.

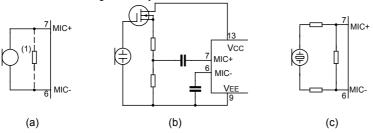


Fig. 10 Alternative microphone arrangement

- (a) Magnetic or dynamic microphone. The resistor marked(1) may be connected to decrease the terminating impedance.
- (b) Electret microphone.
- (c) Piezoelectric microphone.

10

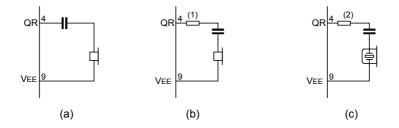


Fig.11 Alternative receiver arrangement

- (a) Dynamic earpiece.
- (b) Magnetic earpiece. The resistor marked(1) may be connected to prvent distortion (inductive load)
- (c) Piezoelectric earpiece. The earpiece marked(2) is requirred to increase the phase margin (capacitive load) Fig.12 Variation of gain with line urrent, with R6 as a parameter.

		$Rexch(\Omega)$				
		400	600	800	1000	
$R6(k\Omega)$						
	36	100	78.7	X	×	
Vexch(V)	48	140	110	93.1	82	
	60	×	×	120	102	

Table 1 Values of resistor R6 for optimum line loss compensation, for various usual values of exchange supply vloltage(Vexch) and exchange feeding bridge resistance(Rexch);R9= 20Ω .

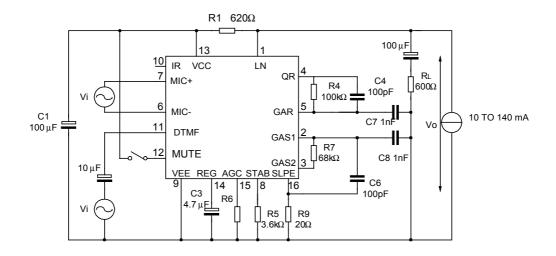


Fig.13 Test circuit defining voltage gain of MIC+,MIC- and DTMF inputs.

Voltage gain is defined as: GV=20*log(|VO/Vi|). For measuring the gain from MIC+ and MIC- the MUTE input should be HIGH(UTC TEA1062N is LOW) or open-circuit, for measuring the DTMF input MUTE should be LOW(UTC TEA1062N is HIGH) .Inputs not under test should be open-circuit.

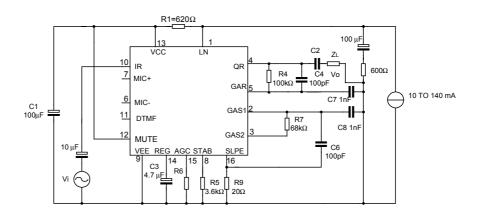


Fig.14 Test circuit for defining voltage gain of the receiving amplifier. Voltage gain is defined as: GV=20*log(|VO/Vi|).

12

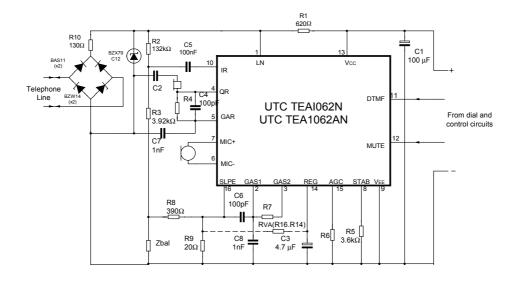
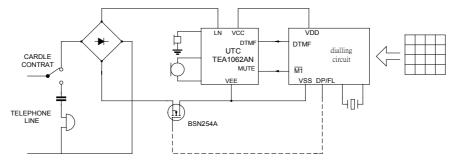



Fig.15 Typical application of the UTC TEA1062AN ,shown here with a piezoelectric earpiece and DTMF dialling. The bridge to the left ,the Zener diode and R10 limit the current into the circuit and the voltage across the circuit during line transients. Pulse dialling or register recall required a different protection arrangement. The DC line voltage can be set to a higher value by resistor RVA(REG to SLPE).

Typical applications of the UTC TEA1062N/TEA1062AN (simplified) Fig.16 The dashed lines show an optional flash (register recall by timed loop break).

13