## INTEGRATED CIRCUITS

## DATA SHEET

## TEA1068 <br> Versatile telephone transmission circuit with dialler interface

Product specification
Supersedes data of June 1990
File under Integrated Circuits，IC03

## Versatile telephone transmission circuit with dialler interface

## FEATURES

- Voltage regulator with adjustable static resistance
- Provides supply for external circuitry
- Symmetrical high-impedance inputs ( $64 \mathrm{k} \Omega$ ) for dynamic, magnetic or piezoelectric microphones
- Asymmetrical high-impedance input ( $32 \mathrm{k} \Omega$ ) for electret microphone
- Dual-Tone Multi-Frequency (DTMF) signal input with confidence tone
- Mute input for pulse or DTMF dialling
- Power down input for pulse dial or register recall
- Receiving amplifier for magnetic, dynamic or piezoelectric earpieces
- Large gain setting range on microphone and earpiece amplifiers
- Line current-dependent line loss compensation facility for microphone and earpiece amplifiers
- Gain control adaptable to exchange supply
- DC line voltage adjustment facility.


## GENERAL DESCRIPTION

The TEA1068 is a bipolar integrated circuit performing all speech and line interface functions required in fully electronic telephone sets. It performs electronic switching between dialling and speech.

## QUICK REFERENCE DATA

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {LN }}$ | line voltage | $\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$ | 4.2 | 4.45 | 4.7 | V |
| $\mathrm{l}_{\text {line }}$ | line current <br> TEA1068 <br> TEA1068T | normal operation normal operation | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | - | $\begin{aligned} & 140 \\ & 100 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$ |
| ICC | internal supply current | power down; input LOW | - | 0.96 | 1.3 | mA |
|  |  | power down; input HIGH | - | 55 | 82 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{CC}}$ | supply voltage for peripherals | $\begin{gathered} \mathrm{I}_{\text {line }}=15 \mathrm{~mA} ; \\ \text { MUTE }=\mathrm{HIGH} \\ \mathrm{I}_{\mathrm{p}}=1.2 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{p}}=1.7 \mathrm{~mA} \\ \hline \end{gathered}$ | $\begin{aligned} & 2.8 \\ & 2.5 \\ & \hline \end{aligned}$ | $3.05$ | $1-$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{G}_{\mathrm{v}}$ | voltage gain microphone amplifier receiving amplifier |  | $\begin{aligned} & 44 \\ & 17 \end{aligned}$ | - | $\begin{aligned} & 60 \\ & 39 \end{aligned}$ | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$ |
| $\Delta \mathrm{G}_{\mathrm{v}}$ | line loss compensation gain control range |  | 5.5 | 5.9 | 6.3 | dB |
| $V_{\text {exch }}$ | exchange supply voltage |  | 24 | - | 60 | V |
| $\mathrm{R}_{\text {exch }}$ | exchange feeding bridge resistance range |  | 0.4 | - | 1 | $\mathrm{k} \Omega$ |
| $\mathrm{T}_{\text {amb }}$ | ambient operating temperature |  | -25 |  | +75 | ${ }^{\circ} \mathrm{C}$ |

## ORDERING INFORMATION

| TYPE | PACKAGE |  |  |
| :--- | :---: | :--- | :--- |
|  | NAME | DESCRIPTION | VERSION |
| TEA1068 | DIP18 | plastic dual in-line package; 18 leads (300 mil) | SOT102-1 |
| TEA1068T | SO20 | plastic small outline package; 20 leads; body width 7.5 mm | SOT163-1 |

## Versatile telephone transmission circuit with dialler interface

## BLOCK DIAGRAM



The figures in parentheses refer to the TEA1068T.
Fig. 1 Block diagram.

Versatile telephone transmission circuit with dialler interface

## PINNING

| SYMBOL | PIN |  | DESCRIPTION |
| :--- | :---: | :---: | :--- |
|  | TEA1068 | TEA1068T |  |
| LN | 1 | 1 | positive line terminal |
| GAS1 | 2 | 2 | gain adjustment transmitting amplifier |
| GAS2 | 3 | 3 | gain adjustment transmitting amplifier |
| QR- | 4 | 4 | inverting output receiving amplifier |
| QR+ | 5 | 5 | non-inverting output receiving amplifier |
| GAR | 6 | 6 | gain adjustment receiving amplifier |
| MIC- | 7 | 7 | inverting microphone input |
| n.c. | - | 8 | not connected |
| MIC+ | 8 | 9 | non-inverting microphone input |
| STAB | 9 | 10 | current stabilizer |
| V $_{\text {EE }}$ | 10 | 11 | negative line terminal |
| IR | 11 | 12 | receiving amplifier input |
| n.c. | - | 13 | not connected |
| PD | 12 | 14 | power-down input |
| DTMF | 13 | 15 | dual-tone multi-frequency input |
| MUTE | 14 | 16 | mute input |
| V $_{\text {CC }}$ | 15 | 17 | positive supply decoupling |
| REG | 16 | 18 | voltage regulator decoupling |
| AGC | 17 | 19 | automatic gain control input |
| SLPE | 18 | 20 | slope (DC resistance) adjustment |



Fig. 2 Pin configuration TEA1068.


Fig. 3 Pin configuration TEA1068T.

# Versatile telephone transmission circuit TEA1068 with dialler interface 

## FUNCTIONAL DESCRIPTION

## Supplies: $\mathrm{V}_{\mathrm{Cc}}$, LN, SLPE, REG and STAB

Power for the TEA1068 and its peripheral circuits is usually obtained from the telephone line. The TEA1068 develops its own supply at $\mathrm{V}_{\mathrm{CC}}$ and regulates its voltage drop. The supply voltage V

Versatile telephone transmission circuit with dialler interface

## Mute input (MUTE)

A HIGH level at MUTE enables the DTMF input and inhibits the microphone and the receiving amplifier inputs.

A LOW level or an open circuit has the reverse effect. MUTE switching causes only negligible clicks at the earpiece outputs and on the line.

## Dual-Tone Multi Frequency input (DTMF)

When the DTMF input is enabled, dialling tones may be sent onto the line. The voltage gain from DTMF to LN is typically 25.5 dB (when $R 7=68 \mathrm{k} \Omega$ ) and varies with R7 in the same way as the gain of the microphone amplifier. The signalling tones can be heard in the telephone earpiece at a low level (confidence tone).

## Receiving amplifier: IR, QR+, QR- and GAR

The receiving amplifier has one input IR and two complementary outputs, a non-inverting output QR+ and an inverting output QR-. These outputs may be used for single-ended or for differential drive depending on the sensitivity and type of earpiece used (see Fig.12). Gain from IR to QR+ is typically 25 dB (when $\mathrm{R} 4=100 \mathrm{k} \Omega$ ). This is sufficient for low-impedance magnetic or dynamic microphones, which are suited for single-ended drive. By using both outputs (differential drive), the gain is increased by 6 dB . This feature can be used when the earpiece impedance exceeds $450 \Omega$, (high-impedance dynamic or piezoelectric types).

The output voltage of the receiving amplifier is specified for continuous-wave drive. The maximum output voltage will be higher under speech conditions where the ratio of peak to RMS value is higher.

The receiving amplifier gain can be adjusted between 17 dB and 33 dB with single-ended drive and between 26 dB and 39 dB with differential drive to suit the sensitivity of the transducer used. The gain is set by the external resistor R4 connected between GAR and QR+. Overall receive gain between LN and $\mathrm{QR}+$ is calculated by subtracting the anti-side-tone network attenuation ( 32 dB ) from the amplifier gain. Two external capacitors, $\mathrm{C} 4=100 \mathrm{pF}$ and $\mathrm{C} 7=10 \times \mathrm{C} 4=1 \mathrm{nF}$, are necessary to ensure stability. A larger value of C4 may be chosen to obtain a first-order, low-pass filter. The 'cut-off' frequency corresponds with the time constant R4×C4.

## Automatic Gain Control input AGC

Automatic line loss compensation is achieved by connecting a resistor R6 between AGC and $\mathrm{V}_{\mathrm{EE}}$. This automatic gain control varies the microphone amplifier gain and the receiving amplifier gain in accordance with the $D C$ line current.

The control range is 5.9 dB . This corresponds to a line length of 5 km for a 0.5 mm diameter copper twisted-pair cable with a DC resistance of $176 \Omega / \mathrm{km}$ and an average attenuation $1.2 \mathrm{~dB} / \mathrm{km}$.

Resistor R6 should be chosen in accordance with the exchange supply voltage and its feeding bridge resistance (see Fig. 13 and Table 1). Different values of R6 give the same ratio of line currents for start and end of the control range. If automatic line loss compensation is not required, AGC may be left open. The amplifiers then all give their maximum gain as specified.

## Power-Down input (PD)

During pulse dialling or register recall (timed loop break), the telephone line is interrupted. During these interruptions, the telephone line provides no power for the transmission circuit or circuits supplied by $\mathrm{V}_{\mathrm{Cc}}$. The charge held on C 1 will bridge these gaps. This bridging is made easier by a HIGH level on the PD input, which reduces the typical supply current from 1 mA to $55 \mu \mathrm{~A}$ and switches off the voltage regulator, thus preventing discharge through LN. When PD is HIGH, the capacitor at REG is disconnected with the effect that the voltage stabilizer will have no switch-on delay after line interruptions. This minimizes the contribution of the IC to the current waveform during pulse dialling or register recall. When this facility is not required, PD may be left open-circuit.

## Side-tone suppression

Suppression of the transmitted signal in the earpiece is obtained by the anti-side-tone network consisting of $R 1 / / Z_{\text {line }}, R 2$, R3 and $Z_{\text {bal }}$ (see Fig.14). Maximum compensation is obtained when the following conditions are fulfilled:
$R 9 \times R 2=R 1\left(R 3+\left[R 8 / / Z_{b a l}\right]\right)$
$\left[Z_{\text {bal }} /\left(Z_{\text {bal }}+R 8\right)=Z_{\text {line }} /\left(Z_{\text {line }}+R 1\right)\right]$

# Versatile telephone transmission circuit with dialler interface 

If fixed values are chosen for R1, R2, R3 and R9, then condition (1) will always be fulfilled, provided that $\left|R 8 / / Z_{\text {bal }}\right| \ll$ R3. To obtain optimum side-tone suppression, condition (2) has to be fulfilled, resulting in:
$Z_{\text {bal }}=(R 8 / R 1) Z_{\text {line }}=k \times Z_{\text {line }}$, where $k$ is a scale factor:
$\mathrm{k}=(\mathrm{R} 8 / \mathrm{R} 1)$.
Scale factor $k$ (dependent on the value of R8) must be chosen to meet the following criteria:

1. Compatibility with a standard capacitor from the E6 or E12 range for $Z_{\text {bal }}$
2. $\left|Z_{\text {bal }} / / R 8\right| \ll R 3$ to fulfil condition (1) and thus ensuring correct anti-side-tone bridge operation
3. $\left|Z_{\text {bal }}+R 8\right| \gg R 9$ to avoid influencing the transmitter gain.
In practice, $Z_{\text {line }}$ varies greatly with the line length and cable type; consequently, an average value has to be
chosen for $Z_{\text {bal }}$, thus giving an optimum setting for short or long lines.

Example: the balanced line impedance ( $\mathrm{Z}_{\mathrm{bal}}$ ) at which the optimum suppression is preset can be calculated by:

Assume $Z_{\text {line }}=210 \Omega+(1265 \Omega / 140 \mathrm{nF})$, representing a 5 km line of 0.5 mm diameter, copper, twisted-pair cable matched to $600 \Omega(176 \Omega / \mathrm{km} ; 38 \mathrm{nF} / \mathrm{km})$. When $\mathrm{k}=0.64$, then $\mathrm{R} 8=390 \Omega ; \mathrm{Z}_{\text {bal }}=130 \Omega+(820 \Omega / / 220 \mathrm{nF})$.

The anti-side-tone network for the TEA1060 family shown in Fig. 5 attenuates the signal received from the line by 32 dB before it enters the receiving amplifier.
The attenuation is almost constant over the whole audio frequency range.

Figure 6 shows a conventional Wheatstone bridge anti-side-tone circuit that can be used as an alternative. Both bridge types can be used with either resistive or complex set impedances.


Fig. 5 Equivalent circuit of TEA1060 family anti-side-tone bridge.

Versatile telephone transmission circuit with dialler interface


Fig. 6 Equivalent circuit of an anti-side-tone network in a Wheatstone bridge configuration.

## LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

| SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {LN }}$ | positive continuous line voltage |  | - | 12 | V |
| $\mathrm{V}_{\mathrm{LN}(\mathrm{R})}$ | repetitive line voltage during switch-on or line interruption |  | - | 13.2 | V |
| $\mathrm{V}_{\text {LN(RM) }}$ | repetitive peak line voltage for a 1 ms pulse per 5 s | $\begin{aligned} & \text { R9 = } 20 \Omega ; \\ & \text { R10 = } 13 \Omega \text {; (Fig.15) } \end{aligned}$ | - | 28 | V |
|  | line current | R9 = $20 \Omega$; note 1 | - | 140 | mA |
| $\mathrm{V}_{\mathrm{n}}$ | voltage on any other pin |  | $\mathrm{V}_{\mathrm{EE}}-0.7$ | $\mathrm{V}_{\mathrm{CC}}+0.7$ | V |
| $\mathrm{P}_{\text {tot }}$ | total power dissipation <br> TEA1068 <br> TEA1068T | R9 = $20 \Omega$; note 2 | \|- | $\begin{array}{\|l} 769 \\ 555 \end{array}$ | $\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$ |
| $\mathrm{T}_{\text {stg }}$ | IC storage temperature |  | -40 | +125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {amb }}$ | operating ambient temperature |  | -25 | +75 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{j}}$ | junction temperature |  | - | 125 | ${ }^{\circ} \mathrm{C}$ |

## Notes

1. Mostly dependent on the maximum required $T_{\text {amb }}$ and on the voltage between LN and SLPE. See Figs 7 and 8 to determine the current as a function of the required voltage and the temperature.
2. Calculated for the maximum ambient temperature specified $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$ and a maximum junction temperature of $125^{\circ} \mathrm{C}$.

## Versatile telephone transmission circuit with dialler interface

THERMAL CHARACTERISTICS

| SYMBOL | PARAMETER | VALUE | UNIT |
| :--- | :--- | :---: | :---: |
| $R_{\text {th j }-\mathrm{a}}$ | thermal resistance from junction to ambient in free air |  |  |
|  | TEA1068 | 65 | K/W |
|  | TEA1068T | 90 | K/W |


(1) $\mathrm{T}_{\mathrm{amb}}=45^{\circ} \mathrm{C} ; \mathrm{P}_{\text {tot }}=1231 \mathrm{~mW}$.
(2) $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C} ; \mathrm{P}_{\text {tot }}=1077 \mathrm{~mW}$.
(3) $\mathrm{T}_{\mathrm{amb}}=65^{\circ} \mathrm{C} ; \mathrm{P}_{\mathrm{tot}}=923 \mathrm{~mW}$.
(4) $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C} ; \mathrm{P}_{\mathrm{tot}}=769 \mathrm{~mW}$.

Fig. 7 Safe operating area TEA1068.

(1) $\mathrm{T}_{\mathrm{amb}}=45^{\circ} \mathrm{C} ; \mathrm{P}_{\text {tot }}=888 \mathrm{~mW}$.
(2) $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C} ; \mathrm{P}_{\text {tot }}=777 \mathrm{~mW}$.
(3) $\mathrm{T}_{\text {amb }}=65^{\circ} \mathrm{C} ; \mathrm{P}_{\text {tot }}=666 \mathrm{~mW}$.
(4) $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C} ; \mathrm{P}_{\text {tot }}=555 \mathrm{~mW}$.

Fig. 8 Safe operating area TEA1068T.

## Versatile telephone transmission circuit with dialler interface

## CHARACTERISTICS

$\mathrm{I}_{\text {line }}=10$ to $140 \mathrm{~mA} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{f}=800 \mathrm{~Hz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supplies: LN and $\mathrm{V}_{\text {cc }}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{LN}}$ | voltage drop over circuit between LN and $\mathrm{V}_{\mathrm{EE}}$ | microphone inputs open $\begin{aligned} & \mathrm{I}_{\text {line }}=5 \mathrm{~mA} \\ & \mathrm{I}_{\text {line }}=15 \mathrm{~mA} \\ & \mathrm{I}_{\text {line }}=100 \mathrm{~mA} \\ & \mathrm{I}_{\text {line }}=140 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 3.95 \\ & 4.2 \\ & 5.4 \\ & - \end{aligned}$ | $\begin{array}{\|l} 4.25 \\ 4.45 \\ 6.1 \\ - \end{array}$ | $\begin{array}{\|l\|} 4.55 \\ 4.7 \\ 6.7 \\ 7.5 \end{array}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ |
| $\Delta \mathrm{V}_{\mathrm{LN}} / \Delta \mathrm{T}$ | voltage drop variation with temperature | $\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$ | -4 | -2 | 0 | mV/K |
| $\mathrm{V}_{\text {LN }}$ | voltage drop over circuit, between LN and $\mathrm{V}_{\mathrm{EE}}$ with external resistor $R_{\text {VA }}$ | $\begin{aligned} & l_{\text {line }}=15 \mathrm{~mA} \\ & R_{\mathrm{VA}}(\mathrm{LN} \text { to } \mathrm{REG})=68 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{VA}}(\text { REG to } \mathrm{SLPE})=39 \mathrm{k} \Omega \end{aligned}$ | $\begin{aligned} & 3.45 \\ & 4.65 \end{aligned}$ | $\begin{aligned} & 3.8 \\ & 5 \end{aligned}$ | $\begin{array}{l\|l} 4.1 \\ 5.35 \end{array}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | supply current | $\begin{aligned} \hline \mathrm{V}_{\mathrm{CC}} & =2.8 \mathrm{~V} \\ \mathrm{PD} & =\mathrm{LOW} \\ \mathrm{PD} & =\mathrm{HIGH} \end{aligned}$ | - | $\begin{aligned} & 0.96 \\ & 55 \end{aligned}$ | $\begin{aligned} & 1.3 \\ & 82 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$ |
| $\mathrm{V}_{\text {CC }}$ | supply voltage available for peripheral circuitry | $\begin{aligned} \mathrm{I}_{\text {line }} & =15 \mathrm{~mA} ; \mathrm{MUTE}=\mathrm{HIGH} \\ \mathrm{I}_{\mathrm{p}} & =1.2 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{p}} & =0 \mathrm{~mA} \end{aligned}$ | $\begin{array}{\|l\|} \hline 2.8 \\ 3.5 \\ \hline \end{array}$ | $\begin{aligned} & 3.05 \\ & 3.75 \end{aligned}$ |  | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| Microphone inputs MIC+ and MIC- |  |  |  |  |  |  |
| $\left\|z_{i}\right\|$ | input impedance | differential between MIC+ and MIC- | 51 | 64 | 77 | $\mathrm{k} \Omega$ |
|  |  | single-ended MIC+ or MIC- to $\mathrm{V}_{\mathrm{EE}}$ | 25.5 | 32 | 38.5 | $\mathrm{k} \Omega$ |
| CMRR | common mode rejection ratio |  | - | 82 | - | dB |
| $\mathrm{G}_{v}$ | voltage gain from MIC+/MIC- to LN | $\mathrm{l}_{\text {line }}=15 \mathrm{~mA} ; \mathrm{R7}=68 \mathrm{k} \Omega$; | 51 | 52 | 53 | dB |
| $\Delta \mathrm{G}_{\mathrm{vf}}$ | gain variation with frequency at $f=300 \mathrm{~Hz}$ and $f=3400 \mathrm{~Hz}$ | with respect to 800 Hz | -0.5 | $\pm 0.2$ | +0.5 | dB |
| $\Delta \mathrm{G}_{\mathrm{v} T}$ | gain variation with temperature at $-25^{\circ} \mathrm{C}$ and $+75^{\circ} \mathrm{C}$ | $l_{\text {line }}=50 \mathrm{~mA}$; <br> with respect to $25^{\circ} \mathrm{C}$; without R6 | - | $\pm 0.2$ | - | dB |
| Dual-tone multi-frequency input DTMF |  |  |  |  |  |  |
| $\left\|Z_{i}\right\|$ | input impedance |  | 16.8 | 20.7 | 24.6 | $\mathrm{k} \Omega$ |
| $\mathrm{G}_{\mathrm{v}}$ | voltage gain from DTMF to LN | $\mathrm{l}_{\text {line }}=15 \mathrm{~mA} ; \mathrm{R} 7=68 \mathrm{k} \Omega$ | 24.5 | 25.5 | 26.5 | dB |
| $\Delta \mathrm{G}_{\mathrm{vf}}$ | gain variation with frequency at $f=300 \mathrm{~Hz}$ and $\mathrm{f}=3400 \mathrm{~Hz}$ | with respect to 800 Hz | -0.5 | $\pm 0.2$ | +0.5 | dB |
| $\Delta \mathrm{G}_{\mathrm{v} T}$ | gain variation with temperature at $\mathrm{T}_{\text {amb }}=-25^{\circ} \mathrm{C}$ and $+75^{\circ} \mathrm{C}$ | $\begin{aligned} & l_{\text {line }}=50 \mathrm{~mA} ; \\ & \text { with respect to } 25^{\circ} \mathrm{C} \end{aligned}$ | - | $\pm 0.5$ | - | dB |
| Gain adjustment connections GAS1 and GAS2 |  |  |  |  |  |  |
| $\Delta \mathrm{G}_{v}$ | gain variation with R7, transmitting amplifier |  | -8 | - | +8 | dB |

Versatile telephone transmission circuit with dialler interface

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transmitting amplifier output LN |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{LN}(\mathrm{rms})}$ | output voltage (RMS value) | $\begin{gathered} l_{\text {line }}=15 \mathrm{~mA} \\ \mathrm{THD}=2 \% \\ \mathrm{THD}=10 \% \end{gathered}$ | $1.9$ | $\begin{aligned} & 2.3 \\ & 2.6 \end{aligned}$ | - | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{no} \text { (rms) }}$ | noise output voltage (RMS value) | $l_{\text {line }}=15 \mathrm{~mA} ; \mathrm{R7}=68 \mathrm{k} \Omega$; $200 \Omega$ between MIC- and MIC+; psophometrically weighted (P53 curve) | - | -72 | - | dBmp |
| Receiving amplifier input IR |  |  |  |  |  |  |
| $\left\|Z_{i}\right\|$ | input impedance |  | 17 | 21 | 25 | k $\Omega$ |

## Receiving amplifier outputs QR+ and QR-

| $\left\|Z_{0}\right\|$ | output impedance | single ended | - | 4 | - | $\Omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{G}_{\mathrm{v}}$ | voltage gain from IR to QR+ or QR- | $\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$ <br> $R_{L}$ (from $Q R+$ or QR-) $=300 \Omega$; single-ended $R_{L}$ (from QR+ or QR-) $=600 \Omega$; differential | 24 $30$ | $\begin{array}{r} 25 \\ 31 \end{array}$ | 26 $32$ | dB <br> dB |
| $\Delta \mathrm{G}_{\mathrm{vf}}$ | gain variation with frequency at $f=300 \mathrm{~Hz}$ and $\mathrm{f}=3400 \mathrm{~Hz}$ | with respect to 800 Hz | -0.5 | -0.2 | 0 | dB |
| $\Delta \mathrm{G}_{\mathrm{vT}}$ | gain variation with temperature at $\mathrm{T}_{\text {amb }}=-25^{\circ} \mathrm{C}$ and $+75^{\circ} \mathrm{C}$ | $\mathrm{l}_{\text {line }}=50 \mathrm{~mA} \text {; }$ <br> with respect to $25^{\circ} \mathrm{C}$; without R6 | - | $\pm 0.2$ | - | dB |
| $\mathrm{V}_{\mathrm{o} \text { (rms) }}$ | output voltage (RMS value) | sine wave drive; $\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$; $\mathrm{I}_{\mathrm{p}}=0 \mathrm{~mA} ; \mathrm{THD}=2 \%$; $R 4=100 \mathrm{k} \Omega$ <br> single-ended; $\mathrm{R}_{\mathrm{L}}=150 \Omega$ <br> single-ended; $\mathrm{R}_{\mathrm{L}}=450 \Omega$ <br> differential; $f=3400 \mathrm{~Hz}$; <br> $\mathrm{R}_{\text {series }}=100 \Omega ; \mathrm{C}_{\mathrm{L}}=47 \mathrm{nF}$ | $\begin{aligned} & 0.3 \\ & 0.4 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 0.52 \\ & 1.0 \end{aligned}$ | $\left.\right\|_{-} ^{-}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{no} \text { (rms) }}$ | noise output voltage (RMS value) | $\begin{aligned} & \hline \text { line }=15 \mathrm{~mA} ; \mathrm{R} 4=100 \mathrm{k} \Omega ; \\ & \text { IR open-circuit } \\ & \text { psophometrically weighted } \\ & \text { (P53 curve) } \\ & \quad \begin{array}{l} \text { single-ended; } R_{L}=300 \Omega \\ \text { differential; } R_{L}=600 \Omega \end{array} \\ & \hline \end{aligned}$ | - | $\begin{array}{\|l\|} \hline 50 \\ 100 \end{array}$ | \|- | $\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$ |

## Gain adjustment GAR

| $\Delta G_{v}$ | gain variation of receiving amplifier <br> achievable by varying R4 between <br> GAR and QR | -8 | - | +8 | dB |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Versatile telephone transmission circuit with dialler interface

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MUTE input |  |  |  |  |  |  |
| $\mathrm{V}_{\text {IH }}$ | HIGH level input voltage |  | 1.5 | - | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\text {IL }}$ | LOW level input voltage |  | - | - | 0.3 | V |
| $\mathrm{I}_{\text {MUTE }}$ | input current |  | - | 8 | 15 | $\mu \mathrm{A}$ |
| $\Delta \mathrm{G}_{\mathrm{v}}$ | voltage gain reduction between MIC+ and MIC- to LN | MUTE $=$ HIGH | - | 70 | - | dB |
| $\mathrm{G}_{v}$ | voltage gain from DTMF to QR+ or QR- | MUTE $=\mathrm{HIGH} ; \mathrm{R} 4=100 \mathrm{k} \Omega$; single-ended; $\mathrm{R}_{\mathrm{L}}=300 \Omega$ | -21 | -19 | -17 | dB |

Power-Down input PD

| $\mathrm{V}_{\mathrm{IH}}$ | HIGH level input voltage |  | 1.5 | - | $\mathrm{V}_{\mathrm{CC}}$ | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{IL}}$ | LOW level input voltage |  | - | - | 0.3 | V |
| $\mathrm{I}_{\mathrm{pd}}$ | input current in power-down <br> condition |  | - | 5 | 10 | $\mu \mathrm{~A}$ |

Automatic Gain Control input AGC

| $\Delta \mathrm{G}_{\mathrm{v}}$ | gain control range from IR to QR+/QR- and from MIC+/MIC- to LN | $\begin{aligned} & l_{\text {line }}=70 \mathrm{~mA} ; \mathrm{R} 6=110 \mathrm{k} \Omega \\ & \text { between } \mathrm{AGC} \text { and } \mathrm{V}_{\mathrm{EE}} \end{aligned}$ | -5.5 | -5.9 | -6.3 | dB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{l}_{\text {line(H) }}$ | highest line current for maximum gain | R6 $=110 \mathrm{k} \Omega$ between AGC and $V_{E E}$ | - | 23 | - | mA |
| $\mathrm{l}_{\text {line(L) }}$ | lowest line current for minimum gain | R6 = $110 \mathrm{k} \Omega$ between AGC and $\mathrm{V}_{\mathrm{EE}}$ | - | 61 | - | mA |
| $\Delta \mathrm{G}_{v}$ | voltage gain variation | between $\mathrm{I}_{\text {line }}=15 \mathrm{~mA}$ and $l_{\text {line }}=35 \mathrm{~mA} ; R 6=110 \mathrm{k} \Omega$ between $A G C$ and $V_{E E}$ | -1.0 | -1.5 | -2.0 | dB |



Fig. 9 Supply arrangement.

## Versatile telephone transmission circuit with dialler interface



Curve (1) is valid when the receiving amplifier is not driven or when MUTE $=$ HIGH. Curve (2) is valid when MUTE $=$ LOW and the receiving amplifier is driven; $\mathrm{V}_{\mathrm{o}(\mathrm{rms})}=150 \mathrm{mV} ; \mathrm{R}_{\mathrm{L}}=150 \Omega$ asymmetrical.
The supply possibilities can be increased simply by setting the voltage drop over the circuit $\mathrm{V}_{\mathrm{LN}}$ to a higher value by means of resistor $\mathrm{R}_{\mathrm{VA}}$ connected between REG and SLPE.

Fig. 10 Typical current $\mathrm{I}_{\mathrm{p}}$ available from $\mathrm{V}_{\mathrm{Cc}}$ for peripheral circuitry with $\mathrm{V}_{\mathrm{CC}} \geq 2.2 \mathrm{~V}$.

a. Magnetic or dynamic microphone.

b. Electret microphone.

c. Piezoelectric microphone.
(1) May be connected to decrease the terminating impedance.

Fig. 11 Alternative microphone arrangements.

## Versatile telephone transmission circuit

 with dialler interface
a. Dynamic earpiece with less than $450 \Omega$ impedance.

b. Dynamic earpiece with more than $450 \Omega$ impedance.

c. Magnetic earpiece with more than $450 \Omega$ impedance.

d. Piezoelectric earpiece.
(1) May be connected to prevent distortion (inductive load).
(2) Required to increase the phase margin (capacitive load).

Fig. 12 Alternative receiver arrangements.


Fig. 13 Variation of gain with line current, with R6 as a parameter.

## Versatile telephone transmission circuit

 with dialler interfaceTable 1 Values of resistor R6 for optimum line loss compensation, for various usual values of exchange supply voltage $\mathrm{V}_{\text {exch }}$ and exchange feeding bridge resistance $\mathrm{R}_{\text {exch }} ; \mathrm{R} 9=20 \Omega$

| $\mathbf{V}_{\text {exch }}(\mathrm{V})$ | $\mathbf{R 6}(\mathbf{k} \Omega)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{R}_{\text {exch }}=\mathbf{4 0 0} \Omega$ | $\mathbf{R}_{\text {exch }}=\mathbf{6 0 0} \Omega$ | $\mathbf{R}_{\text {exch }}=\mathbf{8 0 0} \Omega$ | $\mathbf{R}_{\text {exch }}=\mathbf{1 0 0 0} \Omega$ |
| 24 | 61.9 | 48.7 | X | X |
| 36 | 100 | 78.7 | 68 | 60.4 |
| 48 | 140 | 110 | 93.1 | 82 |
| 60 | X | X | 120 | 102 |



Voltage gain is defined as; $\mathrm{G}_{\mathrm{v}}=20 \log \left|\mathrm{~V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}\right|$. For measuring the gain from MIC+ and MIC-, the MUTE input should be LOW or open, for measuring the DTMF input, MUTE should be HIGH. Inputs not under test should be open.

Fig. 14 Test circuit for defining voltage gain of MIC+, MIC- and DTMF inputs.

## Versatile telephone transmission circuit with dialler interface



Voltage gain is defined as; $\mathrm{G}_{\mathrm{v}}=20 \log \left|\mathrm{~V}_{0} / \mathrm{V}_{\mathrm{i}}\right|$.
Fig. 15 Test circuit for defining voltage gain of the receiving amplifier.

## Versatile telephone transmission circuit with dialler interface

## APPLICATION INFORMATION



Typical application of the TEA1068, shown here with a piezoelectric earpiece and DTMF dialling. The bridge to the left and R10 limit the current into the circuit and the voltage across the circuit during line transients. Pulse dialling or register recall require a different protection arrangement.

Fig. 16 Application diagram.

## Versatile telephone transmission circuit with dialler interface



Fig. 17 DTMF set with a CMOS DTMF dialling circuit.

## Versatile telephone transmission circuit with dialler interface

## PACKAGE OUTLINES

DIP18: plastic dual in-line package; 18 leads ( $\mathbf{3 0 0}$ mil)
SOT102-1



DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | $\underset{\max .}{A}$ | $\underset{\text { min. }}{\mathbf{A}_{\mathbf{1}}}$ | $\mathrm{A}_{2}$ max. | b | $\mathrm{b}_{1}$ | $\mathrm{b}_{2}$ | c | $D^{(1)}$ | $E^{(1)}$ | e | $\mathbf{e}_{1}$ | L | $\mathrm{M}_{\mathrm{E}}$ | $\mathbf{M}_{\mathbf{H}}$ | w | $\begin{gathered} Z^{(1)} \\ \max . \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 4.7 | 0.51 | 3.7 | $\begin{aligned} & 1.40 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 1.40 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$ | $\begin{aligned} & 21.8 \\ & 21.4 \end{aligned}$ | $\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$ | 2.54 | 7.62 | $\begin{aligned} & 3.9 \\ & 3.4 \end{aligned}$ | $\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$ | $\begin{aligned} & 9.5 \\ & 8.3 \end{aligned}$ | 0.254 | 0.85 |
| inches | 0.19 | 0.020 | 0.15 | $\begin{aligned} & 0.055 \\ & 0.044 \end{aligned}$ | $\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$ | $\begin{aligned} & 0.055 \\ & 0.044 \end{aligned}$ | $\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$ | $\begin{aligned} & 0.86 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$ | 0.10 | 0.30 | $\begin{aligned} & 0.15 \\ & 0.13 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 0.33 \end{aligned}$ | 0.01 | 0.033 |

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN <br> PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |  |
| SOT102-1 |  |  |  |  | $-93-10-14$ |  |

## Versatile telephone transmission circuit with dialler interface



DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | $\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | c | $D^{(1)}$ | $E^{(1)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $L_{p}$ | Q | v | w | y | $Z^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 2.65 | $\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$ | $\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$ | 0.25 | $\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$ | $\begin{aligned} & 13.0 \\ & 12.6 \end{aligned}$ | $\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$ | 1.27 | $\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$ | 1.4 | $\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$ | 0.25 | 0.25 | 0.1 | $\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$ |
| inches | 0.10 | $\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$ | 0.01 | $\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$ | $\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 0.49 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$ | 0.050 | $\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$ | 0.055 | $\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$ | $\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$ | 0.01 | 0.01 | 0.004 | $\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$ |  |

## Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

| OUTLINE VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |
| SOT163-1 | 075E04 | MS-013AC |  | $\square$ ¢ | $\begin{aligned} & -95-01-24 \\ & 97-05-22 \end{aligned}$ |

# Versatile telephone transmission circuit with dialler interface 

## SOLDERING

## Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

## DIP

## Soldering by dipping or by wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ( $\mathrm{T}_{\text {stg max }}$ ). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

## Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V ) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

## SO

## Reflow soldering

Reflow soldering techniques are suitable for all SO packages.
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

## Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

## Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V ) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

Versatile telephone transmission circuit

## DEFINITIONS

| Data sheet status |  |
| :--- | :--- |
| Objective specification | This data sheet contains target or goal specifications for product development. |
| Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. |
| Product specification | This data sheet contains final product specifications. |
| Limiting values |  |
| Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or <br> more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation <br> of the device at these or at any other conditions above those given in the Characteristics sections of the specification <br> is not implied. Exposure to limiting values for extended periods may affect device reliability. |  |
| Application information | Where application information is given, it is advisory and does not form part of the specification. |

## LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

# Versatile telephone transmission circuit TEA1068 with dialler interface 

## NOTES

## Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. (02) 805 4455, Fax. (02) 8054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. (01) 60 101-1256, Fax. (01) 60 101-1250
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK,
Tel. (172) 200 733, Fax. (172) 200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. (359) 2689 211, Fax. (359) 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS: Tel. (800) 234-7381, Fax. (708) 296-8556
Chile: see South America
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. (852) 2319 7888, Fax. (852) 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032) 88 2636, Fax. (031) 571949
Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. (358) 0-615 800, Fax. (358) 0-61580 920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. (01) 4099 6161, Fax. (01) 40996427
Germany: P.O. Box 1051 40, 20035 HAMBURG,
Tel. (040) 2353 60, Fax. (040) 23536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01) 4894 339/4894 911, Fax. (01) 4814240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, BOMBAY 400018 Tel. (022) 4938 541, Fax. (022) 4938722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 7640 000, Fax. (01) 7640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. (03) 64504 44, Fax. (03) 6481007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. (0039) 26752 2531, Fax. (0039) 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. (03) 3740 5130, Fax. (03) 37405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02) 709-1412, Fax. (02) 709-1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. (03) 750 5214, Fax. (03) 7574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. 9-5(800) 234-7831, Fax. (708) 296-8556
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. (040) 2783749, Fax. (040) 2788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09) 849-4160, Fax. (09) 849-7811
Norway: Box 1, Manglerud 0612, OSLO, Tel. (022) 74 8000, Fax. (022) 748341
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (63) 2816 6380, Fax. (63) 28173474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. (022) 612 2831, Fax. (022) 6122327

Portugal: see Spain
Romania: see Italy
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65) 350 2000, Fax. (65) 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd.,
195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,

Tel. (011) 470-5911, Fax. (011) 470-5494
South America: Rua do Rocio 220-5th floor, Suite 51, CEP: 04552-903-SÃO PAULO-SP, Brazil,
P.O. Box 7383 (01064-970),

Tel. (011) 821-2333, Fax. (011) 829-1849
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03) 301 6312, Fax. (03) 3014107
Sweden: Kottbygatan 7, Akalla. S-16485 STOCKHOLM,
Tel. (0) 8-632 2000, Fax. (0) 8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. (01) 488 2211, Fax. (01) 4817730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,
TAIPEI 100, Tel. (886) 2382 4443, Fax. (886) 23824444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. (66) 2 745-4090, Fax. (66) 2 398-0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. (0212) 279 2770, Fax. (0212) 2826707
Ukraine: PHILIPS UKRAINE,
2A Akademika Koroleva str., Office 165, 252148 KIEV, Tel. 380-44-4760297, Fax. 380-44-4766991
United Kingdom: Philips Semiconductors LTD.,
276 Bath Road, Hayes, MIDDLESEX UB3 5BX,
Tel. (0181) 730-5000, Fax. (0181) 754-8421
United States: 811 East Arques Avenue, SUNNYVALE,
CA 94088-3409, Tel. (800) 234-7381, Fax. (708) 296-8556
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. (381) 11825 344, Fax. (359) 211635777

Internet: http://www.semiconductors.philips.com/ps/
For all other countries apply to: Philips Semiconductors,
Marketing \& Sales Communications, Building BE-p,
P.O. Box 218,5600 MD EINDHOVEN, The Netherlands,

Fax. +31-40-2724825

## SCDS48 © Philips Electronics N.V. 1996

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands
417021/10/ed/pp24
Date of release: 1996 Apr 23
Document order number: 939775000804

