

Vishay Semiconductors

Integrated Low Profile Transceiver Module for Telekom Applications 9.6 kbit/s to 1.152 Mbit/s Data Transmission Rate

Description

The miniaturized TFBS5607 is an ideal transceiver for applications in telecommunications like mobile phones, pagers, and PDAs of all kinds. The devices are both designed for optimum performance and minimum package size.

These devices cover the latest IrDA[®] physical layer for Low Power SIR and MIR 1.152 Mbit/s IrDA[®] mode.

The transceivers is in a very low profile package, allowing to replace and upgrade a variety of common SIR devices to MIR functionality with the additional feature of variable logic voltage swing. The TFBS5607 is using the Vishay Semiconductors, IBM[®] and Infineon[®] order of the pinning.

The new features

The devices are modifications of the TFDU5107 devices. An additional new feature as in TFDU5107 is the adjustable logic voltage $V_{ddlogic}$ swing. It can be set externally between 1.5 V and 5.5 V.

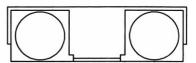
The device covers the supply voltage range from 5.5 V down to 2.7 V and with its low current consumption it is optimum suited for battery powered applications. Double eye safety protection by pulse duration and current limitation is integrated. The device is defined to operate over an extended low power IrDA range close to 1 m. A custom modification of current control for MIR low power standard is available on request.

Features

- Package: TFBS5607 Vishay Legacy Pinning Order
- Compatible to IrDA Low Power Standard (MIR and SIR with Lowest Current Consumption)
- Wide Supply Voltage Range (2.7 V to 5.5 V)
- Logic Input and Output Voltage 1.5 V to 5.5 V
- Tri State Receiver Output with weak pull-up efficient in shut down mode
- Lowest Power Consumption, typically 500 μA (900 μA max.) in Receive Mode,
 <1 μA in Shutdown Mode
- Fewest External Components
- Vishay's well known High EMI Immunity
- Eye Safety Protection Integrated

Applications

- Mobile Phones, Pagers, Hand-held Battery Operated Equipment
- Computers (WinCE, PalmPC, PDAs)
- Digital Still and Video Cameras
- Extended IR Adapters
- Medical and Industrial Data Collection


Vishay Semiconductors

Packages

Ordering Information

Part Number	Qty / Reel	Description
TFBS5607-TR3	2500 pcs	

Functional Block Diagram

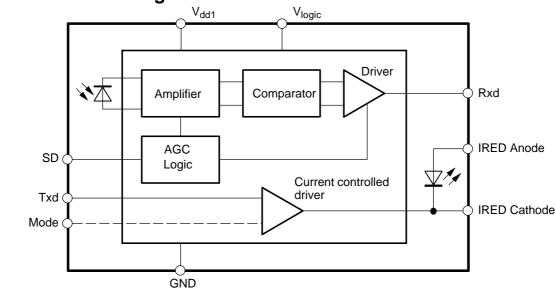


Figure 1. Functional Block Diagram

(mode input is for internal current selection of customized version for low power or full IrDA range)

Definitions:

In the Vishay transceiver data sheets the following nomenclature is used for defining the IrDA operating modes:

SIR: 2.4 kbit/s to 115.2 kbit/s, equivalent to the basic serial infrared standard with the physical layer version IrPhy 1.0

MIR 576 kbit/s to 1152 kbit/s

FIR 4 Mbit/s

MIR and FIR were implemented with IrPhy 1.1, followed by IrPhy 1.2, adding the SIR Low Power Standard. IrPhy 1.3 extended the Low Power Option to MIR and FIR and VFIR was added with IrPhy 1.4. A new version of the standard in any obsoletes the former version.

VFIR 16 Mbit/s

Vishay Semiconductors

Pin Description

Pin TFBS560 7	Function	Description	I/O	Ac- tive
1	IRED Anode	IRED Anode to be externally connected to V_{CC} through a current control resistor. This pin is allowed to be supplied from an uncontrolled power supply separated from the controlled V_{CC} supply.		
2	IRED Cathode	IRED Cathode, internally connected to driver transistor		
3	Txd	Transmit Data Input	Ι	HIGH
4	Rxd	Received Data Output, push–pull CMOS driver output capable of driving a standard CMOS or TTL load. No external pull–up or pull–down resistor is required. Pin is connected to V_{logic} with a weak pull-up (500 k Ω) when device is in shutdown mode. Rxd output is quiet during transmission.	0	LOW
5	SD	Shutdown, will switch the device into shutdown after a delay of 1 ms	Ι	HIGH
6	Vdd	Supply Voltage		
7	V _{logic}	Defines the input and output logic swing voltage	Ι	
8	GND	Ground		

TFBS5607

1 Pin order: IREDA IRED C Txd Rxd SD Vdd Vlogic GND

Figure 2. Pinning

Vishay Semiconductors

Absolute Maximum Ratings

Reference Point Ground, Pin 8, unless otherwise noted

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage Range	pply Voltage Range 0 V < V _{dd2} < 6 V		-0.5		6	V
	0 V < V _{dd1} < 6 V	V _{dd2}	-0.5		6	V
	$0 V < V_{dd1} < 6 V$ $0 V < V_{dd2} < 6 V$	V _{logic}	-0.5		6	V
Input Current	all pins (IRED Anode excluded)				10	mA
Output Sink Current, Rxd	Rxd				25	mA
Rep. Pulsed IRED Current	IRED Anode, t _{on} < 20%, < 20 μs	I _{IRED} (RP)			500	mA
Average IRED Current		I _{IRED} (DC)			125	mA
Power Dissipation		P _{tot}			450	mW
Junction Temperature		TJ			125	°C
Ambient Temperature Range (Operating)		T _{amb}	-25		85	°C
Storage Temperature Range		T _{stg}	-25		85	°C
Soldering Temperature	t = 20 s @215°C			215	240	°C
Transmitter Data and Shutdown Input Voltage	2.7 V < V _{dd1} < 5.5 V	$V_{Txd,}V_{SD}$	-0.5		6	V
Receiver Data Output Voltage		V _{Rxd}	-0.5		V _{logic} +0.5	V
Virtual source size	Method: (1–1/e) encircled energy	d	2.5	2.8		mm
Max. Intensity for Class 1 operation of IEC 60825 or EN60825	EN60825, 1.1.2001 Worst case IrDA pulse pattern, lab. conditions.	Ι _e			500*) save in all modes	mW/sr

*) The Jan. 2001 edition of the IEC825–1 or EN60825–1 gives no limitation below the IrDA standard maximum. IrDA max. limit is 500 mW/sr.

The device is protected against Txd short by an internal shut–off when the pulse duration is exceeding maximum IrDA specification value of pulse duration. In addition the max. current is limited.

Vishay Semiconductors

Optoelectronic Characteristics

 $T_{amb} = 25^{\circ}C$, $V_{dd1} = 2.4$ V to 5.5 V unless otherwise noted. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

	-			-		
Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Transceiver		· · · · · · · · · · · · · · · · · · ·				
Supported Data Rates Rxd pulse duration 400 ns	Base band SIR mode		9.6		1152	kbit/s
	Base band 1.152 Mbit/s		9.6		152	kbit/s
Supply Voltage Range	specified operation	V _{dd1}	2.4		5.5	V
Supply Voltage	V _{dd2} = 2.4 V to 5.5 V	V _{dd2}	2.4		5.5	V
Supply Current receive mode	V _{dd1} = 2.4 V to 5.5 V	I _S		500	900	μA
Supply Current shutdown mode	$V_{dd1} = 2.4 V \text{ to } 5.5 V$	I _{SSD}		0.1	1	μA
Average Supply Current *)	V _{dd1} = 2.4 V to 5.5 V	I _S		60	110	mA
Standard MIR transmit mode $I_e > 100 \text{ mW/sr}$ a serial resistor for reducing the internal power dissipation should be implemented, e.g. $R_L = 2.7 \Omega$						
Logic Voltage Range	V _{dd2} = 2.4 V to 5.5 V	V _{logic}	1.5		5.5	V
Shutdown/ Mode clock pulse duration		t _{prog}	0.2		20	μs
Shutdown delay "Receive off"		t _{prog}	1		1.5	ms
Shutdown delay "Receive on"		t _{prog}	40		100	μs
Transceiver "Power on" Settling Time	Time from switching on V _{dd1} to established specified operation			50		μs

*) Max. data is for 20% (25%) duty cycle for SIr (MIR) 1.152 Mbit/s low power mode. The typical value is given for the case of normal operation with statistical equal distribution of "0" and "1" states.

Vishay Semiconductors

Optoelectronic Characteristics

 $T_{amb} = 25^{\circ}C$, $V_{dd1} = 2.4$ V to 5.5 V unless otherwise noted. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

	-	-		-		
Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Receiver						
Min. Detection Threshold Irradiance SIR 9.6 kbit/s to 1.152 Mbit/s *)	$\begin{array}{l} \alpha \leq 15^{\circ} \\ V_{dd1} = 2.4 \ V \ to \ 5.5 \ V \end{array}$	E _{e, min}		40	80	mW/m ²
Min. Detection Threshold Irradiance SIR 576 kbit/s to 1.152 Mbit/s *)	$\begin{aligned} \alpha &\leq 15^{\circ} \\ V_{dd1} &= 2.4 \text{ V to } 5.5 \text{ V} \end{aligned}$	E _{e, min}		70	150	mW/m ²
Maximum Detection Threshold Irradiance	$\begin{array}{l} \alpha \leq 90^{\circ} \\ V_{dd1} = 3 \ V \end{array}$	E _{e, max}	8000	15000		W/m ²
	$ \alpha \le 90^{\circ}$ V _{dd1} = 5 V	E _{e, max}		5000		W/m ²
Logic Low Receiver Input Irradiance		E _{e,max,low}	4			mW/m ²
Output Voltage Rxd	active	V _{OL}		0.5	0.8	V
	C = 15 pF, R = 2.2 k Ω					
	non active	V _{OH}	V _{dd1} -0.5			V
	C = 15 pF, R = 2.2 k Ω					
Output Current Rxd V _{OL} < 0.8 V					4	mA
Rise Time @Load C = 15 pF	$1.5 \text{ V} \leq \text{V}_{\text{logic}} < 1.8 \text{ V}$	t _r		30		ns
Fall Time @Load C = 15 pF	$1.5 \text{ V} \leq \text{V}_{\text{logic}} < 1.8 \text{ V}$	t _f		30		ns
Rise Time @Load: C = 15 pF, R = 2.2 k Ω	$1.8 \text{ V} \leq \text{V}_{\text{logic}} < 5.5 \text{ V}$	t _r	20	25	70	ns
Fall Time @Load: C = 15 pF, R = 2.2 k Ω	$1.8 \text{ V} \leq \text{V}_{\text{logic}} < 5.5 \text{ V}$	t _f	20	25	70	ns
Rxd Signal Electrical Output Pulse Width	$1.5 \text{ V} \leq \text{V}_{\text{logic}} < 5.5 \text{ V}$	tp	250	400	550	ns
Latency	MIR mode	tL		50	200	μs

*) Rxd output pulse duration 400 ns

Optoelectronic Characteristics

 $T_{amb} = 25 \text{ °C}, V_{dd1} = 2.4 \text{ V}$ to 5.5 V unless otherwise noted. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

-	•		-		
Test Conditions	Symbol	Min.	Тур.	Max.	Unit
	V _{IL} (Txd)		1/2 x V _{logic}		V
	V _{IL} (Txd)	0		0.2 x V _{logic}	V
1.5 V < V _{logic} < 5.5 V	V _{IH} (Txd)	0.8 x V _{logic}		V _{logic} + 0.5	V
$V_{dd2} = 3 V$	Ι _e	40	90		mW/ sr
V_{dd1} = 2.7 V to 5.5 V	I _{IRED}		450		mA
P _{WI} > 23 μs	P _{WOmin}	23		80	μs
P _{WI} > 1.6 μs	P _{WO}	1.45		1.75	μs
P _{WI} > 217 ns	P _{WO}	210		226	ns
	t _r , t _f			40	ns
	λρ	850		900	nm
	Δ_{λ}		40		nm
Txd logic low level	Ι _e			0.04	μW/sr
				25	%
	tj			0.2	μs
	1.5 V < V_{logic} < 5.5 V V_{dd2} = 3 V V_{dd1} = 2.7 V to 5.5 V P_{WI} > 23 µs P_{WI} > 1.6 µs P_{WI} > 217 ns	$\begin{array}{ c c c c c } & V_{IL}(Txd) \\ \hline & V_{IL}(Txd) \\ \hline \\ 1.5 \ V < V_{logic} < 5.5 \ V & V_{IH}(Txd) \\ \hline \\ V_{dd2} = 3 \ V & I_e \\ \hline \\ V_{dd1} = 2.7 \ V \ to \ 5.5 \ V & I_{IRED} \\ \hline \\ P_{WI} > 23 \ \mu s & P_{WOmin} \\ \hline \\ P_{WI} > 1.6 \ \mu s & P_{WO} \\ \hline \\ P_{WI} > 217 \ ns & P_{WO} \\ \hline \\ \hline \\ Txd \ logic \ low \ level & I_e \\ \hline \\ \end{array}$	$\begin{array}{ c c c c c } & V_{IL}(Txd) & V_{IL}(Txd) & 0 \\ \hline 1.5 \ V < V_{logic} < 5.5 \ V & V_{IH}(Txd) & 0.8 \ x \\ V_{logic} & V_{ld2} = 3 \ V & I_e & 40 \\ \hline V_{dd1} = 2.7 \ V \ to \ 5.5 \ V & I_{IRED} & \\ \hline P_{WI} > 23 \ \mu s & P_{WOmin} & 23 \\ \hline P_{WI} > 1.6 \ \mu s & P_{WO} & 1.45 \\ \hline P_{WI} > 217 \ ns & P_{WO} & 210 \\ \hline t_r, \ t_f & \\ \hline \lambda_p & 850 \\ \hline \Delta_{\lambda} & \\ \hline Txd \ logic \ low \ level & I_e & \\ \hline \end{array}$	$\begin{array}{ c c c c c } \hline V_{IL}(Txd) & 1/2 x \\ V_{IDgic} \\ \hline V_{IL}(Txd) & 0 \\ \hline 1.5 \lor \lor \lor_{logic} < 5.5 \lor & \lor_{IH}(Txd) & 0.8 x \\ \lor_{logic} \\ \hline V_{dd2} = 3 \lor & I_e & 40 & 90 \\ \hline V_{dd1} = 2.7 \lor to 5.5 \lor & I_{IRED} & 450 \\ \hline P_{WI} > 23 \ \mu s & P_{WOmin} & 23 \\ \hline P_{WI} > 23 \ \mu s & P_{WO} & 1.45 \\ \hline P_{WI} > 217 \ ns & P_{WO} & 210 \\ \hline t_r, t_f & \\ \hline \Delta_{\lambda} & 40 \\ \hline Txd \ logic \ low \ level & I_e & \\ \hline \end{array}$	$\begin{array}{ c c c c c c } \hline V_{IL}(Txd) & 1/2 x \\ V_{logic} \\ \hline V_{IL}(Txd) & 0 \\ \hline V_{logic} \\ \hline V_{logic} < 5.5 V \\ V_{IH}(Txd) \\ \hline V_{logic} \\ \hline V_{le} \\ \hline V_{le} \\ \hline V_{le} \\ \hline V_{le} \\ \hline V_{logic} \\ \hline V_{le} \hline V_{le} \\ \hline V_{le} \\ \hline V_{le} \hline V_{le} \\ \hline V_{le} \hline V_{le} \\ \hline V_{le} \\ \hline V_{le} \hline V_{le} \\ \hline V_{le} \hline V_$

*) The current through the IRED can be reduced and defined by an external resistor, the internal current limitation is set to 450 mA peak, nominal. For operating above V_{IRED} = 4 V an external resistor is to be used for internal power dissipation reduction

Vishay Semiconductors

Identification

The identification of the device can be recalled by setting the SD active followed by activating Txd for a short period. With the low going edge of Txd a single pulse is generated at Rxd.

The SD is indendet to activate the shutdown function after a delay of 1 ms. Therefore the full sequence should be run with that 1 ms time limitation, see drawing.

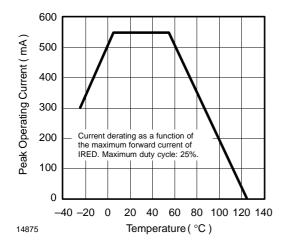


Figure 4. Current Derating as a Function of Ambient Temperature and Duty Cycle, see Absolute Maximum Ratings V_{logic} Setting

$t_{SD}: > 5 \ \mu s$ for "real" shutdown > 1 ms $t_{Txd}: > 0.5 \ \mu s \text{ to } 2 \ \mu s$ $t_{delTxd}: \ge 1 \ \mu s$ $t_{delRxd}: \ge 10 \ ns$ $t_{Rxd} = 400 \ ns$ Rxd

Figure 3. Timing for self identification

Recommended Solder Profile

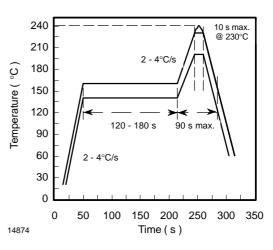
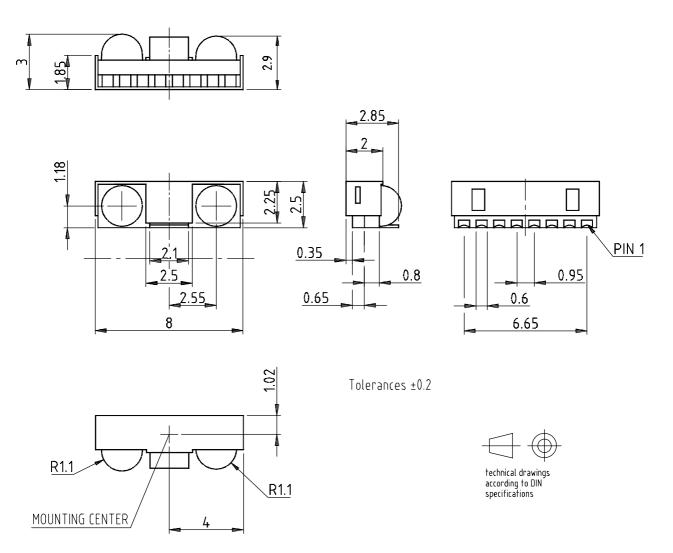


Figure 5. Recommended Solder Profile

The logic voltage swing is set by applying an external voltage to the V_{logic} pin.


Table 1. Truth table

Inputs			Outputs		
SD	Txd	Optical input Irradiance mW/ m ²	Rxd	LED drive current resulting intensity I _e in mW/ sr	
high < 1 ms	pulse	x	low going Txd triggers monostable to edit a 400 ns (nominal) low pulse	0	
high > 1 ms	х	x	floating (500 k Ω to V _{dd})	0	
low	high	x	high	> 40	
low	high > 80 μs	x	high	0	
low	low	< 4	high	0	
low	low	≥ 40	low, edge triggered pulse of 400 ns durating	0	

Current Derating Diagram

TFBS5607 (Mechanical Dimensions)

Drawing-No.: 6.550-5226.01-4 Issue: 1; 29.09.00

Dimensions in mm

16503

Pad Layout

The leads of the device should be soldered in the center position of the pads.

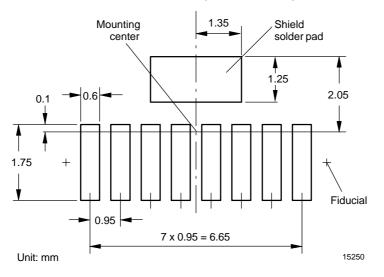


Figure 6. Recommended Land Pattern

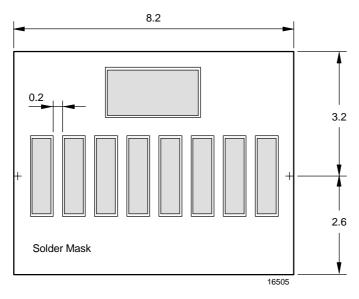


Figure 7. Adjacent Land Keep-out and Solder Mask Areas

TFBS5607 Vishay Semiconductors

Tape and Reel Dimensions 2 \$1.55±0.05 0.355 ± 0.05 1.5 1.75 Polarity Pin 8 \oplus \oplus \oplus Æ ⊕ ſ Æ Æ in **16**±0.2 ထ ⊕ F Pin 1 2.8)ø1.5 8 3.4 Direction of pulling out technical drawings according to DIN specifications Drawing-No.: 9.700-5257.01-4 Issue: 2; 16.03.01 Not indicated tolerances ±0.1 16525 Trailer Leader no devices devices no devices End Start min. 200 min. 400 96 11818 W_1 21:05 \$0. 13 ±0.25 z Reel Hub W_2 16515 Tape Width W_{2 max} Version A Ν W_1 В 16 330 ± 1 60 + 2.5 16.4 + 2 22.4

Vishay Semiconductors

Appendix

Application Hints

Recommended Circuit Diagram TFBS5607

The TFBS5607 doesn't need anv external components when operated at a "clean" power supply. In a more noisy ambient it is recommended to add a combination of a resistor and capacitor (R1, C1, C2) for noise suppression as shown in the figure below. A combination of a electrolytic for the low frequency range and a ceramic capacitor for suppressing the high frequency disturbance will be most effective. The capacitor C3 is only necessary when inductive wiring is used or the power supply cannot deliver the operating peak pulse current. However, a low impedance layout is the better and more cost efficient solution.

The inputs TXD and SD are high impedance CMOS inputs. Therefore, the lines from the I/O to those inputs should be carefully designed not to pick up ambient noise. If long lines are used, loads at the Txd input of the TFBS5607 and at the Rxd input of the controller (!) are recommended. At the IRED Anode voltage supply line an additional capacitor might be necessary when inductive wiring is used. For adjusting the intensity depending on the application, a serial resistor in the Vcc2 supply to the IRED Anode pin can be used.

Table 2. Recommended Application Circuit Components

	· · · · · · · · · · · · · · · · · · ·	
Component	Recommended Value	Vishay Part Number
C1, C3	4.7 μF, 16 V	293D 475X9 016B 2T
C2	0.47 μF, Ceramic	VJ 1206 Y 104 J XXMT
R1	47 Ω, 0.125 W	CRCW-1206-47R0-F-RT1

Shut Down

To shut down the TFBS5600 into a standby mode the SD pin has to be set active. After a delay of < 1 ms it will switch to the standby mode.

Latency

The receiver is in specified conditions after the defined latency. In a UART related application after that time (typically 50 μ s) the receiver buffer of the UART must be cleared. Therefore, the transceiver has to wait at least the specified latency after receiving the last bit before starting the transmission to be sure that the corresponding receiver is in a defined state.

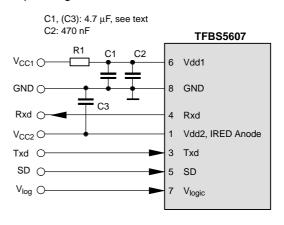


Figure 8. Recommended Application Circuit

Revision History:

- A1.2, 18/02/2002: Final new revision
- A1.3, 17/07/2002: Typos corrected, operating voltage range adjusted to 2.7 V to 5.5 V, wavelength range of transmitter adapted to full IrDA[®] range.

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

> Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423