查询TFDU2201供应商

捷多邦,专业PCB打样工厂,24小时加急出货

MEMBER IrDA

Vishay Semiconductors

Low Profile Transceiver Module **PIN Photodiode and Infrared Emitter**

Description

The miniaturized TFDU2201 is an ideal PIN photodiode transmitter combination in a unique package for applications in telecommunications like mobile phones and pagers. The device is mechanically designed for lowest profile with a height of only 2.8 mm. The device is designed to be compatible to the IrDA standard when using an external receiver IC and IRED driver.

Features

- Package dimension: L 7.3 mm x W 4.55 mm x H 2.75 mm
- SMD side view
- Fast PIN Photodiode for SIR and FIR applications
- Detector with high efficiency and high speed at low bias voltage
- Only 30 mA IRED peak current during transmission for IrDA SIR low power standard
- Lead(Pb)-free device
- Device in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

Applications

- Mobile Phones, Pagers, Personal Digital Assistants (PDA)
- Handheld battery operated equipment

Parts Table

Part	Description	Qty / Reel	
TFDU2201-TR1	Orientated in carrier tape for side view mounting	750 pcs.	
TFDU2201-TR3	Orientated in carrier tape for side view mounting	2250 pcs.	

Pin Description

			电子型	C.COM
Pin Descri	Function	Description	1/0	Active
1	IRED GND	IRED cathode, ground, to be used as heat sink		7101170
2	IRED GND	IRED cathode, ground, to be used as heat sink		
3	IRED Anode	IRED anode, to be driven by a current source		
4	NC	WW.UL		
5	NC			
6	NC			
7	D _{anode}	Detector anode		
8	D _{cathode}	Detector cathode		

Vishay Semiconductors

Pinout

TFDU2201 weight 100 mg

18228

Absolute Maximum Ratings

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Photo pin diode, reverse voltage		V _r	- 0.3		12	V
range						
Photo pin diode, reverse photo					10	mA
current						
Average IRED current		I _{IRED(DC)}			100	mA
Repetitive pulsed IRED current	< 90 µs, t _{on} < 20 %	I _{IRED(RP)}			550	mA
IRED, reverse voltage range		V _{rIRED}	- 0.3		5	V
Power dissipation	see Figure 3	P _{tot}			200	mW
Juntion temperature		TJ			125	°C
Ambient temperature range (operating)		T _{amb}	- 25		+ 85	°C
Storage temperature range		T _{stg}	- 40		+ 85	°C
Soldering temperature	t = 20 s @ 215 °C, see Vishay			215	240	°C
	Telefunken IrDA Design Guide					
Virtual source size	Method: (1 - 1/e) encircled energy	d		2		mm

Compatible to Class 1 opration of IEC 60825 or EN60825 with worst case IrDA SIR pulse pattern, 115.2 kbit/s

Electrical Characteristics

Transceiver

Tested for the following parameters (T = 25 $^{\circ}$ C, unless otherwise stated)

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Supported data rates	base band		9.6		4000	kbit/s

TFDU2201

Vishay Semiconductors

Optoelectronic Characteristics

Receiver

Tested for the following parameters (T = 25 °:C, unless otherwise stated)

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Spectral sensitivity	$\mid \alpha \mid \le \pm 15$ °, V _r = 2 V,	Sλ	1.0	1.2	1.8	nA/(mW/m ²)
	$\lambda = 875 \text{ nm}$					· · ·
Bias voltage range, detector		V _{Rev}			12	V
Reverse leakage current				0.2		nA
Spectral bandwith		λ	800		950	nm
Max. operating irradiance	$\mid \alpha \mid \le \pm$ 90 °C, V _{CC} = 2 V	E _{e, max}	8000	15000		W/m ²
Rise time @ load : R = 50 Ω	$V_r = 2 V, \lambda = 875 nm$	t _r		40		ns
Fall time @ load : R = 50 Ω	$V_r = 2 V, \lambda = 875 nm$	t _r		40		ns

Transmitter

Tested for the following parameters (T = 25 $^\circ :C,$ unless otherwise stated)

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Forward current operating condition for low power IrDA operation	$I_e = 4$ to 28 mW/sr in $ \alpha \le \pm 15^{\circ}$	I _{F1}		30		mA
Output radiant intensity	$ \alpha \le \pm 15$ °, I _{F1} = 35 mA, 25 % duty cycle	l _e	4	8	14	mW/sr
	$ \alpha \le \pm 15$ °, I _{F1} = 350 mA, 25 % duty cycle	l _e	35			mW/sr
Forward voltage	l _f = 50 mA	V _f	1.2		1.45	V
Peak emission wavelength		λ _p	880		900	nm
Spectral emission bandwith				45		nm
Optical rise/fall time	2 MHz square wave signal (duty cycle 1 : 1)			38		ns

Recommended Solder Profile Solder Profile for Sn/Pb soldering

Figure 1. Recommended Solder Profile for Sn/Pb soldering

Lead-Free, Recommended Solder Profile

The TFDU2201 is a lead-free transceiver and qualified for lead-free processing. For lead-free solder paste like $Sn_{(3.0-4.0)}Ag_{(0.5-0.9)}Cu$, there are two standard reflow profiles: Ramp-Soak-Spike (RSS) and Ramp-To-Spike (RTS). The Ramp-Soak-Spike profile was developed primarily for reflow ovens heated by infrared radiation. With widespread use of forced convection reflow ovens the Ramp-To-Spike profile is used increasingly. Shown below in figure 2 is Vishay's recommended profile for use with the TFDU2201 transceivers. For more details please refer to Application note: SMD Assembly Instruction.

Vishay Semiconductors

Figure 3. RTS Recommendation

A ramp-up rate less than 0.9° C/s is not recommended. Ramp-up rates faster than 1.3° C/s could damage an optical part because the thermal conductivity is less than compared to a standard IC.

Vishay Semiconductors

Current Derating Diagram

Figure 4. Current Derating Diagram

Vishay Semiconductors

Package Dimensions in mm

2.3

MARKING ORIENTATION
180 DEGREES ALLOWED

14484

0.8

Vishay Semiconductors

Reel Dimensions

14017

Tape Width	A max.	Ν	W ₁ min.	W ₂ max.	W ₃ min.	W ₃ max.
mm	mm	mm	mm	mm	mm	mm
24	330	60	24.4	30.4	23.9	27.4

Vishay Semiconductors

Tape Dimensions in mm

Drawing-No.: 9.700-5227.01-4 Issue: 3; 03.09.99

Drawing refers to following types: TFDU 4201

18258_1

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423