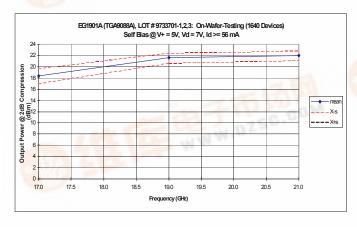
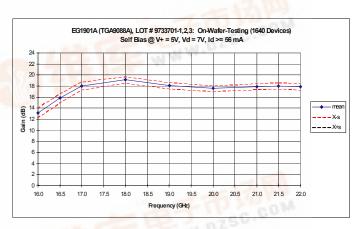


May 3, 2000

17-21 GHz Intermediate Power Amplifier TGA9088A-EPU


Chip Dimensions 2.41mm x 1.52 mm x 0.1mm

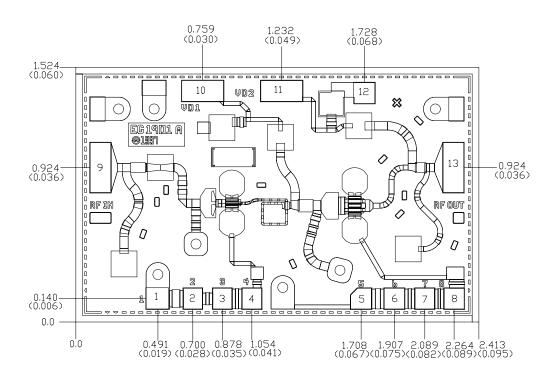
Key Features and Performance


- 0.25um pHEMT Technology
- 17-21GHz Frequency Range
- 22 dBm @ P2dB Nominal Pout
- 18.5 dBm Nominal Gain
- IRL>18 dB, ORL>10 dB
- 7V, 66mA Self Bias

Primary Applications

- Satellite Systems
- Point-to-Point Radio

Measured Pout at 2dB Gain Compression



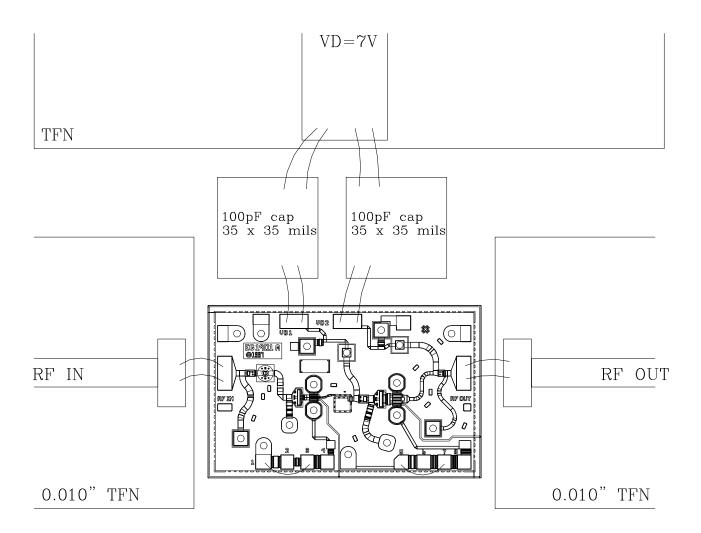
Measured Small Signal Gain

May 3, 2000

TGA9088A

Units: millimeters (inches)

Thickness: 0.1016 (0.004)


Chip edge to bond pad dimensions are shown to center of bond pad Chip size tolerance: +/- 0.051 (0.002)

Bond pad	#1 (GND)	0.130×0.137
Bond pad	#2 (GND)	0.114×0.125
Bond pad	#3 (GND)	0.116×0.125
Bond pad	#4 (GND)	0.118×0.125
Bond pad	#5 (GND)	0.125×0.125
Bond pad	#6 (GND)	0.125×0.123
Bond pad	#7 (GND)	0.125×0.119
Bond pad	#8 (GND)	0.125×0.121
Bond pad	#9 (RF input)	0.125×0.300
Bond pad	#10 (VD1)	0.125×0.250
Bond pad	#11 (VD2)	0.125×0.250
Bond pad	#12 (GND)	0.125×0.125
Bond pad	#13 (RF output)	0.125×0.300

May 3, 2000

TGA9088A

Chip Assembly and Bonding Diagram

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

May 3, 2000

TGA9088A

Assembly Process Notes

Reflow process assembly notes:

- AuSn (80/20) solder with limited exposure to temperatures at or above 300 °C
- alloy station or conveyor furnace with reducing atmosphere
- no fluxes should be utilized
- coefficient of thermal expansion matching is critical for long-term reliability
- storage in dry nitrogen atmosphere

Component placement and adhesive attachment assembly notes:

- vacuum pencils and/or vacuum collets preferred method of pick up
- avoidance of air bridges during placement
- force impact critical during auto placement
- organic attachment can be used in low-power applications
- curing should be done in a convection oven; proper exhaust is a safety concern
- microwave or radiant curing should not be used because of differential heating
- coefficient of thermal expansion matching is critical

Interconnect process assembly notes:

- thermosonic ball bonding is the preferred interconnect technique
- force, time, and ultrasonics are critical parameters
- aluminum wire should not be used
- discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire
- maximum stage temperature: 200 °C

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.