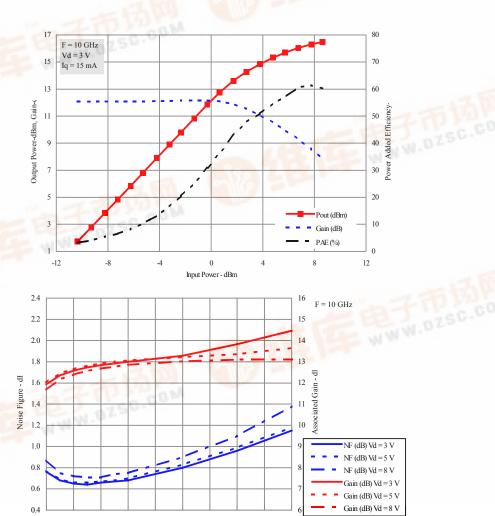


Advance Product Information

300um Discrete pHEMT TGF4350-EPU



Key Features and Performance

- 0.25um pHEMT Technology
- DC 22 GHz Frequency Range
- 1.2 dB NF, 14.5 dB Associated Gain at 10 GHz, 3V Operation
- Floating Source Configuration
- Chip Dimensions 0.5080 mm x 0.4064 mm

Primary Applications

Low Noise amplifiers

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications subject to change without notice

Drain Current - mA

Electrical Characteristics

RECOMMENDED MAXIMUM RATINGS

Symbol	Parameter	Value	Notes
V^{+}	Positive Supply Voltage	7 V	
I ⁺	Positive Supply Current	.085A	<u>3</u> /
P_{D}	Power Dissipation	0.6 W	
P_{IN}	Input Continuous Wave Power	20 dBm	
T_{CH}	Operating Channel Temperature	150 °C	<u>1</u> /, <u>2</u> /
T_{M}	Mounting Temperature (30 seconds)	320 °C	
T_{STG}	Storage Temperature	-65 °C to 150 °C	

- 1/ These ratings apply to individual FET
- Junction operating temperature will directly affect the device mean time to failure (MTTF). For maximum life it is recommended that junction temperatures be maintained at the lowest possible levels.
- 3/ Nominal value of Idss

DC PROBE TESTS $(T_A = 25 \text{ °C} \pm 5 \text{ °C})$

Symbol	Parameter	Minimum	Maximum	Value
Idss	Saturated Drain Current (info	30	141	mA
	only)			
V_{P1-5}	Pinch-off Voltage	-1.5	-0.5	V
BV_{GS1}	Breakdown Voltage gate-source	-30	-8	V
BV _{GD1-5}	Breakdown Voltage gate-drain	-30	-8	V

FET Elements

Lg = 0.040 nH

Rg = 0.525 Ohms

Rgs = 14500 Ohms

Ri = 4.924 Ohms

Cgs = 0.364 pF

Cdg = 0.042 pF

Rdg = 146000 Ohms

Rs = 0.300 Ohms

 $Ls = 0.041 \, nH$

Rds = 253.858 Ohms

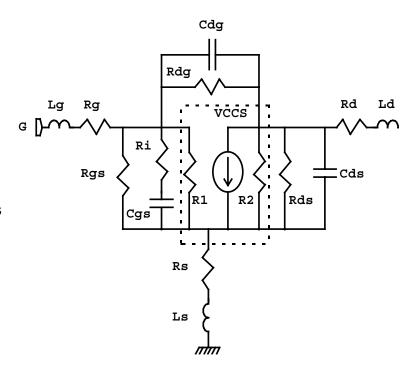
Cds = 0.080 pF

Rd = 0.833 Ohms

Ld = 0.028 nH

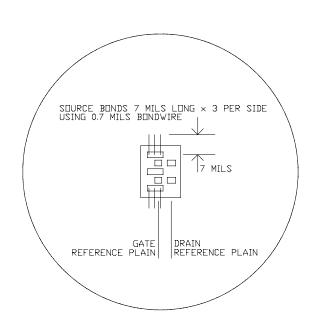
VCCS Parameters

M = 0.091 S

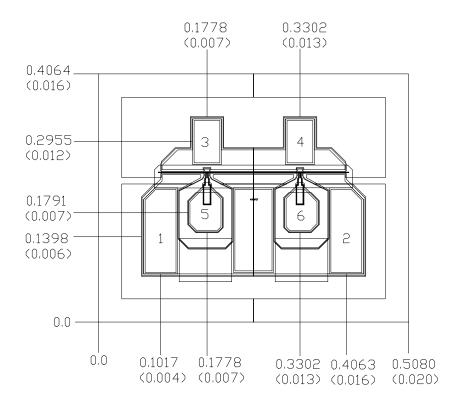

A = 0

R1 = 1E19 Ohms

R2 = 1E19 Ohms


F = 0

T = 4.000 pS


TGA4350EPU pHEMT Model (Vds = 3.0 V and 15mA at T = 25°C)

Device is mounted on a 20 mil high ledge. Source inductance includes that of source bondwires and ledge

Mechanical Drawing

Units: millimeters (inches) Thickness: 0.1016 (0.004)

Chip edge to bond pad dimensions are shown to center of bond pad chip size tolerance: +/- 0.051 (0.002)

 Bond Pad #1,#2 (Source)
 0.051 x 0.136 (0.002 x 0.005)

 Bond Pad #3,#4 (Drain)
 0.042 x 0.069 (0.002 x 0.003)

 Bond Pad #5,#6 (Gate)
 0.051 x 0.067 (0.002 x 0.003)

Process and Assembly Notes

This device should be attached using conductive epoxy only. Contact factory for additional details as required.

Component placement and adhesive attachment assembly notes:

- vacuum pencils and/or vacuum collets preferred method of pick up
- avoidance of air bridges during placement
- force impact critical during auto placement
- organic attachment can be used in low-power applications
- curing should be done in a convection oven; proper exhaust is a safety concern
- microwave or radiant curing should not be used because of differential heating
- coefficient of thermal expansion matching is critical

Interconnect process assembly notes:

- thermosonic ball bonding is the preferred interconnect technique
- force, time, and ultrasonics are critical parameters
- aluminum wire should not be used
- discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire
- maximum stage temperature: 200 °C