

Discrete POWER & Signal **Technologies**

TIS98

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA. Sourced from Process 10. See PN100 for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	60	V
V _{CBO}	Collector-Base Voltage	80	V
V _{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector Current - Continuous	500	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units
		TIS98	-
P _D	Total Device Dissipation	625	mW
	Derate above 25°C	5.0	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

NPN General Purpose Amplifier (continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_C = 10 \text{ mA}, I_B = 0$	60		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 40 \text{ V}, I_{E} = 0$ $V_{CB} = 80 \text{ V}, I_{E} = 0$		10 10	nA μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 6.0 \text{ V}, I_{C} = 0$		20	nA
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 0.1 \text{ mA}$ $I_C = 100 \text{ mA}, I_B = 5.0 \text{ mA}$		1.0 0.5	V
ON CHAR	ACTERISTICS* DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$	100	300	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 0.1 \text{ mA}$ $I_C = 100 \text{ mA}, I_B = 5.0 \text{ mA}$		0.5	V
V _{BE(on)}	Base-Emitter On Voltage	$I_C = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$	0.5	0.7	V
SMALL S	IGNAL CHARACTERISTICS Collector-Base Capacitance	V _{CB} = 5.0 V, f = 1.0 MHz	1.0	4.0	pF
C _{eb}	Emitter-Base Capacitance	$V_{EB} = 0.5 \text{ V}, f = 1.0 \text{ MHz}$		16	pF
h _{fe}	Small-Signal Current Gain	$I_C = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 1.0 kHz $I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 100 MHz	100	400	
y fe	Forward Trans-conductance	$I_C = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 100 MHz	30		mmhos

^{*}Pulse Test: Pulse Width $\leq 300~\mu\text{s},~\text{Duty Cycle} \leq 2.0\%$