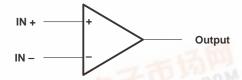

SLOS086 - D2567, OCTOBER 1979 - REVISED OCTOBER 1990

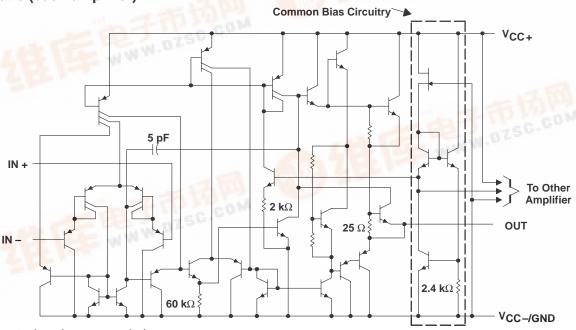
- Wide Range of Supply Voltages Single Supply . . . 5 V to 30 V Dual Supplies . . . \pm 2.5 V to \pm 15 V
- Class AB Output Stage
- **True Differential Input Stage**
- **Low Input Bias Current**
- **Internal Frequency Compensation** WWW.DZSC.COM
- **Short-Circuit Protection**


description

The TL322C and the TL322I are dual operational amplifiers similar in performance to the uA741 but with several distinct advantages. They are designed to operate from a single supply over a range of voltages from 5 V to 30 V. Operation from split supplies is also possible provided the difference between the two supplies is 5 V to 30 V. The common-mode input range includes the negative supply. Output range is from the negative supply to V_{CC} -1.5 V. Quiescent supply currents per amplifier are typically less than one-half those of the uA741.

The TL322C is characterized for operation from 0°C to 70°C. The TL322I is characterized for operation from -40°C to 85°C.

symbol (each amplifier)



AVAILABLE OPTIONS

		PACKAGE					
TA	V _{IO} MAX AT 25°C	SMALL OUTLINE (D)	PLASTIC DIP (P)				
0°C to 70°c	10 mV	TL322CD	TL322CP				
0°C to 70°c	8 mV	TL322ID	TL322IP				

D packages are available taped and reeled. Add R suffix to device type, (e.g., TL322CDR).

schematic (each amplifier)

All component values shown are nominal.

TL322C, TL322I DUAL LOW-POWER OPERATIONAL AMPLIFIERS

SLOS086 - D2567, OCTOBER 1979 - REVISED OCTOBER 1990

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	TL322C	TL322I	UNIT
Supply voltage V _{CC+} (see Note 1)	18	18	V
Supply voltage V _{CC} (see Note 1)	-18	-18	V
Supply voltage V _{CC+} (with respect to V _{CC-})	36	36	V
Differential input voltage (see Note 2)	±36	±36	V
Input voltage (see Notes 1 and 3)		±18	V
Continuous total power disspation	See Diss	ipation Rating Tal	ble
Operating free-air temperature range	0 to 70	-40 to 85	°C
Storage temperature range	-65 to 150	-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260	260	°C

- NOTES: 1. These voltage values are with respect to the midpoint between V_{CC+} and V_{CC-} .
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. Neither input must ever be more positive than V_{CC+} or more negative than V_{CC-} .

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \leq 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	680 mW	5.8 mW/°C	33°C	464 mW	377 mW
Р	680 mW	8.0 mW/°C	65°C	640 mW	520 mW

recommended operating conditions

	MIN	NOM MAX	UNIT
Single supply voltage, V _{CC}	5	30	V
Dual supply voltage, V _{CC+}	2.5	15	V
Dual supply voltage, V _{CC} _	- 2.5	– 15	V

TL322C, TL322I DUAL LOW-POWER OPERATIONAL AMPLIFIERS

SLOS086 - D2567, OCTOBER 1979 - REVISED OCTOBER 1990

electrical characteristics at specified free-air temperature, $V_{\text{CC}\pm}$ = 15 V (unless otherwise noted)

	DADAMETED	TEGT CONDI	TIONOT	1	TL322C		,	TL322I		
	PARAMETER	TEST CONDI	HONSI	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	$V_{O} = 0,$	25°C		2	10		2	8	mV
VIO	Input onset voltage	$R_S = 50 \Omega$	Full range			12			10	1117
αVIO	Temperature coefficient of input offset voltage	$V_O = 0$, $R_S = 50 \Omega$	25°C		10			10		μV/°C
lio	Input offset current	V _O = 0	25°C		30	50		30	75	nA
10	- Input oncot ourront	1.0-0	Full range			200			250	117 (
αΙΙΟ	Temperature coefficient of input offset current	V _O = 0	25°C		50			50		pA/°C
lin	Input bias current	V _O = 0	25°C		-0.2	-0.5		-0.2	-0.5	μА
IB	input bias current	ΛΩ = 0	Full range			-0.8			-1	μΑ
	Common made innut			VCC-	$^{VCC-}$		VCC-	$^{VCC-}$		
^V ICR	Common-mode input voltage range [‡]		25°C	to	to		to	to		V
	voltage range.			13	13.5		13	13.5		
		$R_L = 10 \text{ k}\Omega$	25°C	±12	±13.5		±12	±12.5		
VOM	Peak output voltage swing		25°C	±10	±13		±10	±12		V
· · · · ·		$R_L = 2 k\Omega$	Full range	±10			±10			
	Large-signal differential	$V_{O} = \pm 10 \text{ V},$	25°C	20	200		20	200		
AVD	voltage amplification	$R_L = 2 k\Omega$	Full range	15	-		15			V/mV
ВОМ	Maximum-output- swing bandwidth	$\begin{aligned} &V_{O}(PP)=20 \text{ V},\\ &A_{VD}=1,\\ &THD \leq 5\%,\\ &R_{L}=2 k\Omega \end{aligned}$	25°C		9			9		kHz
B ₁	Unity-gain bandwidth	$V_O = 50 \text{ mV},$ $R_L = 10 \text{ k}\Omega$	25°C		1			1		MHz
φm	Phase margin	$R_L = 2 k\Omega$, $C_L = 200 pF$	25°C		60°			60°		
rį	Input resistance	f = 20 Hz	25°C	0.3	1		0.3	1		ΜΩ
r _o	Output resistance	f = 20 Hz	25°C		75			75		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR} \text{ min},$ $R_S = 50 \Omega$	25°C	70	90		70	90		dB
k _{SVS}	Supply voltage sensitivity $(\Delta V_{IO}/\Delta V_{CC})$	$V_{CC} = \pm 2.5 \text{ V to}$ $\pm 15 \text{ V},$ $R_S = 50 \Omega$	25°C		30	150		30	150	μV/V
los	Short-circuit output current§	V _O = 0	25°C	±10	±30	±45	±10	±30	±45	mA
ICC	Total supply current	$V_O = 0$, No load	25°C		1.4	4		1.4	4	mA

[†] All characteristics are under open-loop conditions unless otherwise noted. Full range for T_A is 0°C to 70°C for TL322C and -40°C to 85°C for TL322I.

[‡] The V_{ICR} limits are directly linked volt-for-volt to supply voltage; the positive limit is 2 V less than V_{CC+}.

[§] Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

TL322C, TL322I DUAL LOW-POWER OPERATIONAL AMPLIFIERS

SLOS086 - D2567, OCTOBER 1979 - REVISED OCTOBER 1990

electrical characteristics, V_{CC+} = 5 V, V_{CC-} = 0 V, T_A = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS†		TL322C		TL322I			UNIT
	PARAMETER	TEST CONDITIONS!	MIN TYP I	MAX	MIN	TYP	MAX	UNIT	
VIO	Input offset voltage	$V_0 = 2.5 \text{ V}, R_S = 50 \Omega$		2	10			8	mV
IIO	Input offset current	V _O = 2.5 V		30	50			75	nA
I _{IB}	Input bias current			-0.2	-0.5			-0.5	pА
		$R_L = 10 \text{ k}\Omega$	3.3	3.5		3.3	3.5		
V_{OM}	Peak output voltage swing‡	$R_L = 10 \text{ k}\Omega,$	V 4.7	1.7		V _{CC+} -1.7			V
		$V_{CC+} = 5 \text{ V to } 30 \text{ V}$	V _{CC+} -1.7		1.7		1.7		
Δ	Large-signal differential	V _O = 1.7 V to 3.3 V,		20 200	200	20	200		\//m\/
AVD	voltage amplification	$R_L = 2 k\Omega$	20						V/mV
ksvs	Supply voltage sensitivity $(\Delta V_{IO}/\Delta V_{CC+})$	V _{CC} = ±2.5 V to ±15 V			150			150	μV/V
Icc	Supply current	V _O = 2.5 V, No load		1.2	4		1.2	4	mA
V ₀₁ /V ₀₂	Crosstalk attenuation	$A_{VD} = 100$, f = 1 kHz to 20 kHz		120			120		dB

[†] All characteristics are specified under open-loop conditions.

switching characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V A_{VD} = 1, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$V_I = \pm 10 \text{ V}$, $C_L = 100 \text{ pF}$, See Figure 1		0.6		V/μs
t _r	Rise time	.V. 50 V 0 400 5 B 4010		0.35		μs
t _f	Fall time	$\Delta V_O = 50$ mV, $C_L = 100$ pF, $R_L = 10$ k Ω , See Figure 1		0.35		μs
	Overshoot factor	See Figure 1		20%		
	Crossover distortion	$V_{I(PP)} = 30 \text{ mV}, V_{O(PP)} = 2 \text{ V}, f = 10 \text{ kHz}$		1%		

PARAMETER MEASUREMENT INFORMATION

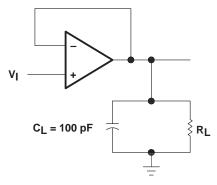
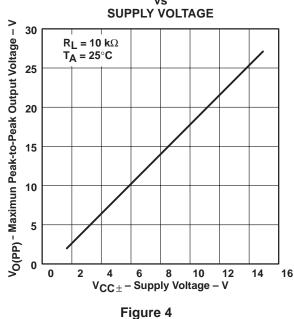


Figure 1. Unity-Gain Amplifier


[‡] Output will swing essentially to ground.

TYPICAL CHARACTERISTICS[†]

INPUT BIAS CURRENT FREE-AIR TEMPERATURE 250 $V_{CC\pm} = \pm 15 \text{ V}$ 225 200 IB- Input Bias Current - mA 175 150 125 100 75 50 25 0 L -75 -50 -25 0 25 50 75 100 125 T_A - Free-Air Temperature - °C

Figure 2

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

INPUT BIAS CURRENT vs SUPPLY VOLTAGE

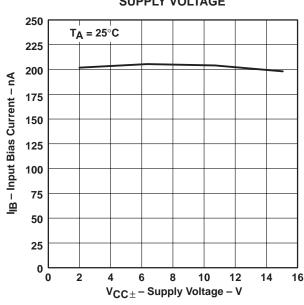


Figure 3

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs

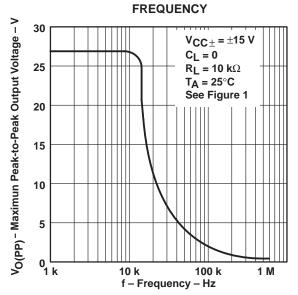


Figure 5

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SLOS086 - D2567, OCTOBER 1979 - REVISED OCTOBER 1990

TYPICAL CHARACTERISTICS

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs

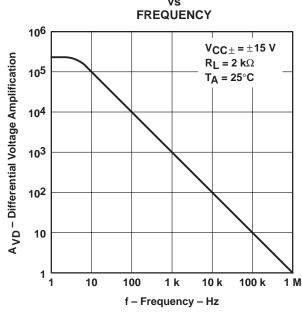


Figure 6

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

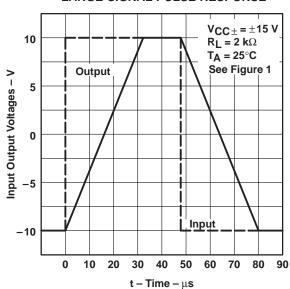


Figure 7

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated