
查询TLV0831供应商

捷多邦,专业PCB打样工厂,24小**T社V0831**C,TLV0831 TLV0832C, TLV0832I 3-VOLT 8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL SLAS148 - SEPTEMBER 1996

- 8-Bit Resolution
- 2.7 V to 3.6 V V_{CC}
- Easy Microprocessor Interface or Standalone Operation
- Operates Ratiometrically or With V_{CC} Reference
- Single Channel or Multiplexed Twin **Channels With Single-Ended or Differential** Input Options
- Input Range 0 V to V_{CC} With V_{CC} Reference
- Inputs and Outputs Are Compatible With **TTL and MOS**
- Conversion Time of 32 µs at f_(CLK) = 250 kHz
- Designed to Be Functionally Equivalent to the National Semiconductor ADC0831 and ADC0832 at 3 V Supply
- Total Unadjusted Error . . . ± 1 LSB

CS Vcc 8 7 CLK IN+ 2 6 DO IN-3 GND REF 5 TLV0832...D OR P PACKAGE (TOP VIEW)

TLV0831 . . . D OR P PACKAGE (TOP VIEW)

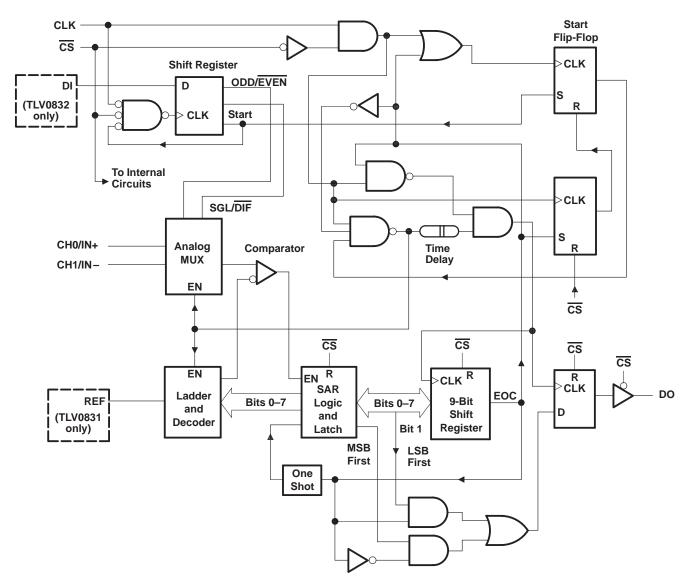
description

These devices are 8-bit successive-approximation analog-to-digital converters. The TLV0831 has single input channels; the TLV0832 has multiplexed twin input channels. The serial output is configured to interface with standard shift registers or microprocessors.

The TLV0832 multiplexer is software configured for single-ended or differential inputs. The differential analog voltage input allows for common-mode rejection or offset of the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

The operation of the TLV0831 and TLV0832 devices is very similar to the more complex TLV0834 and TLV0838 devices. Ratiometric conversion can be attained by setting the REF input equal to the maximum analog input signal value, which gives the highest possible conversion resolution. Typically, REF is set equal to V_{CC} (done internally on the TLV0832).

The TLV0831C and TLV0832C are characterized for operation from 0°C to 70°C. The TLV0831I and TLV0832I are characterized for operation from -40° C to 85° C.


AVAILABLE OPTIONS								
	PACKAGE							
TA	SMALL OUTLINE (D)		PLAS	STIC DIP (P)				
0°C to 70°C	TLV0831CD	TLV0832CD	TLV0831CP	TLV0832CP				
-40°C to 85°C	TLV0831ID	TLV0832ID	TLV0831IP	TLV0832IP				

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

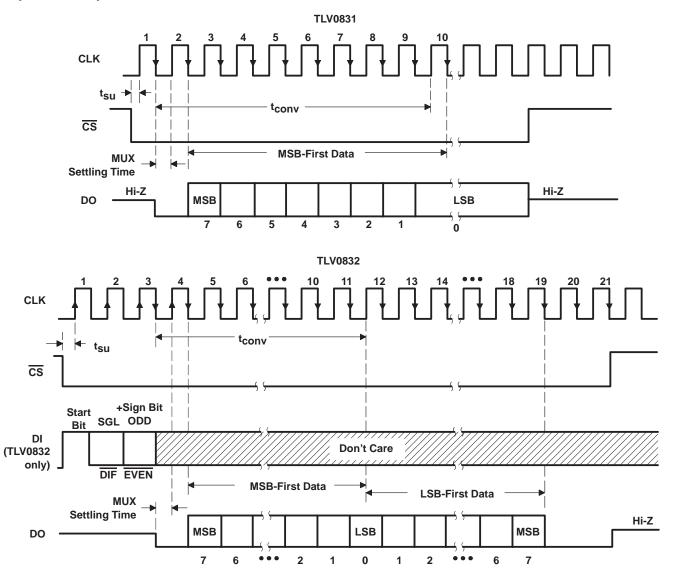
functional block diagram

functional description

The TLV0831 and TLV0832 use a sample-data-comparator structure that converts differential analog inputs by a successive-approximation routine. The input voltage to be converted is applied to an input terminal and is compared to ground (single ended), or to an adjacent input (differential). The TLV0832 input terminals can be assigned a positive (+) or negative (–) polarity. The TLV0831 contains only one differential input channel with fixed polarity assignment; therefore it does not require addressing. The signal can be applied differentially, between IN+ and IN–, to the TLV0831 or can be applied to IN+ with IN– grounded as a single ended input. When the signal input applied to the assigned positive terminal is less than the signal on the negative terminal, the converter output is all zeros.

Channel selection and input configuration are under software control using a serial-data link from the controlling processor. A serial-communication format allows more functions to be included in a converter package with no increase in size. In addition, it eliminates the transmission of low-level analog signals by locating the converter at the analog sensor and communicating serially with the controlling processor. This process returns noise-free digital data to the processor.

A conversion is initiated by setting \overline{CS} low, which enables all logic circuits. \overline{CS} must be held low for the complete conversion process. A clock input is then received from the processor. An interval of one clock period is automatically inserted to allow the selected multiplexed channel to settle. DO comes out of the high-impedance state and provides a leading low for one clock period of multiplexer settling time. The SAR comparator compares successive outputs from the resistive ladder with the incoming analog signal. The comparator output indicates whether the analog input is greater than or less than the resistive-ladder output. As the conversion proceeds, conversion data is simultaneously output from DO, with the most significant bit (MSB) first. After eight clock periods, the conversion is complete. When \overline{CS} goes high, all internal registers are cleared. At this time, the output circuits go to the high-impedance state. If another conversion is desired, \overline{CS} must make a high-to-low transition followed by address information.


A TLV0832 input configuration is assigned during the multiplexer-addressing sequence. The multiplexer address shifts into the converter through the data input (DI) line. The multiplexer address selects the analog inputs to be enabled and determines whether the input is single ended or differential. When the input is differential, the polarity of the channel input is assigned. In addition to selecting the differential mode, the polarity may also be selected. Either channel of the channel pair may be designated as the negative or positive input.

On each low-to-high transition of the clock input, the data on DI is clocked into the multiplexer-address shift register. The first logic high on the input is the start bit. A 2-bit assignment word follows the start bit on the TLV0832. On each successive low-to-high transition of the clock input, the start bit and assignment word are shifted through the shift register. When the start bit is shifted into the start location of the multiplexer register, the input channel is selected and conversion starts. The TLV0832 DI terminal to the multiplexer shift register is disabled for the duration of the conversion.

The TLV0832 outputs the least-significant-bit (LSB) first data after the MSB-first data stream. The DI and DO terminals can be tied together and controlled by a bidirectional processor I/O bit received on a single wire. This is possible because DI is only examined during the multiplexer-addressing interval and DO is still in the high-impedance state.

sequence of operation

TLV0832 MUX-ADDRESS CONTROL LOGIC TABLE

MUX A	DDRESS	CHANNEL	NUMBER
SGL/DIF ODD/EVEN		CH0	CH1
L	L	+	-
L	Н	-	+
Н	L	+	
Н	Н		+

H = high level, L = low level,

- or + = terminal polarity for the selected input channel

absolute maximum ratings over recommended operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)	6.5 V
Input voltage range, V _I : Logic	.3 V to V _{CC} + 0.3 V
Analog	.3 V to V _{CC} + 0.3 V
Input current, I ₁	±5 mA
Total input current	±20 mA
Operating free-air temperature range, T _A : C suffix	0°C to 70°C
I suffix	−40°C to 85°C
Storage temperature range, T _{stg}	−65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: P package	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential voltages, are with respect to the network ground terminal.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC} (see clock operation	g conditions)	2.7	3.3	3.6	V
High-level input voltage, VIH		2			V
Low-level input voltage, VIL				0.8	V
Clock froguency, frou to	$V_{CC} = 2.7 V$	250 10 600 40% 60%	kHz		
Clock frequency, f(CLK)	V _{CC} = 3.3 V	10		3 3.6 0.8 250 600	kHz
Clock duty cycle (see Note 2)		40%		60%	
Pulse duration, CS high, t _{wH(CS)}		220			ns
Setup time, CS low or TLV0832 data va	id before CLK↑, t _{su}	350			ns
Hold time, TLV0832 data valid after CLF	↑, t _h	90			ns
Operating free-air temperature, TA	C suffix	0		70	°C
Operating nee-an temperature, TA	I suffix	-40		85	C

NOTE 2: The clock-duty-cycle range ensures proper operation at all clock frequencies. When a clock frequency is used outside the recommended duty-cycle range, the minimum pulse duration (high or low) is 1 µs.

electrical characteristics over recommended range of operating free-air temperature, V_{CC} = 3.3 V, $f_{(CLK)}$ = 250 kHz (unless otherwise noted)

digital section

			C SUFFIX		I SUFFIX					
PARAMETER		TEST CONDITIONS [†]		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VOH High-level output voltage		V _{CC} = 3 V,	I _{OH} = -360 μA	2.8			2.4			V
	V _{CC} = 3 V,	I _{OH} = -10 μA	2.9			2.8			v	
VOL	Low-level output voltage	V _{CC} = 3 V,	I _{OL} = 1.6 mA			0.34			0.4	V
Ι _{ΙΗ}	High-level input current	VIH = 3.6 V			0.005	1		0.005	1	μA
IIL	Low-level input current	$V_{IL} = 0$			-0.005	-1		-0.005	-1	μA
IОН	High-level output (source) current	At V _{OH} , DO= 0 V	′, T _A = 25°C	-6.5	-15		-6.5	-15		mA
IOL	Low-level output (sink) current	At V _{OL} , DO= 0 V,	, T _A = 25°C	8	-16		8	-16		mA
1	High-impedance-state output	V _O = 3.3 V,	T _A = 25°C		0.01	3		0.01	3	
loz	current (DO)	V _O = 0,	T _A = 25°C		-0.01	-3		-0.01	-3	μA
Ci	Input capacitance				5			5		pF
Co	Output capacitance				5			5		pF

[†] All parameters are measured under open-loop conditions with zero common-mode input voltage.

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

analog and converter section

	PARAMETER		TEST CONDITIONS [†]	MIN	TYP‡	MAX	UNIT
VIC	Common-mode input voltage		See Note 3	-0.05 to V _{CC} +0.05			V
^I I(stdby)	Standby input current (see Note 4)	On channel	V _I = 3.3 V			1	
		Off channel	$V_{I} = 0$			-1	
		On channel	$V_{I} = 0$			-1	μA
		Off channel	V _I = 3.3 V			1	
^r i(REF)	Input resistance to REF			1.3	2.4	5.9	kΩ

[†] All parameters are measured under open-loop conditions with zero common-mode input voltage.

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

NOTES: 3. When channel IN– is more positive than channel IN+, the digital output code is 0000 0000. Connected to each analog input are two on-chip diodes that conduct forward current for analog input voltages one diode drop above V_{CC}. Care must be taken during testing at low V_{CC} levels (3 V) because high-level analog input voltage (3.6 V) can, especially at high temperatures, cause the input diode to conduct and cause errors for analog inputs that are near full scale. As long as the analog voltage does not exceed the supply voltage by more than 50 mV, the output code is correct. To achieve an absolute 0- to 3.3-V input range requires a minimum V_{CC} of 3.25 V for all variations of temperature and load.

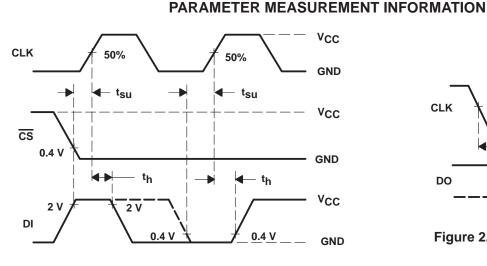
4. Standby input currents go in or out of the on or off channels when the A/D converter is not performing conversion and the clock is in a high or low steady-state conditions.

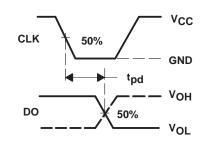
total device

		PARAMETER	_	MIN	typ‡	MAX	UNIT
I _{CC} Su	Supply current		TLV0831		0.2	0.75	m A
	Supply current	TLV0832		1.5	2.5	mA	

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

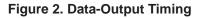
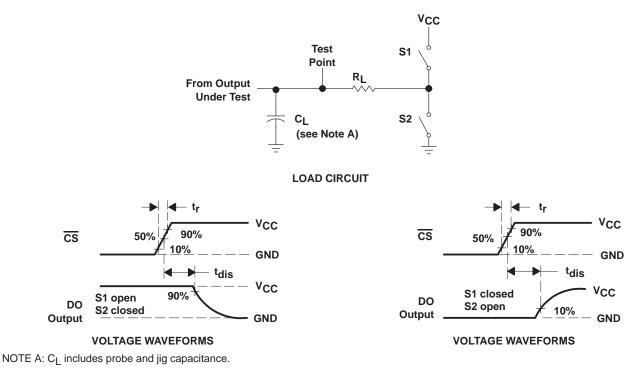
operating characteristics V_{CC} = V_{ref} = 3.3 V, $f_{(CLK)}$ = 250 kHz, t_r = t_f = 20 ns, T_A = 25°C (unless otherwise noted)

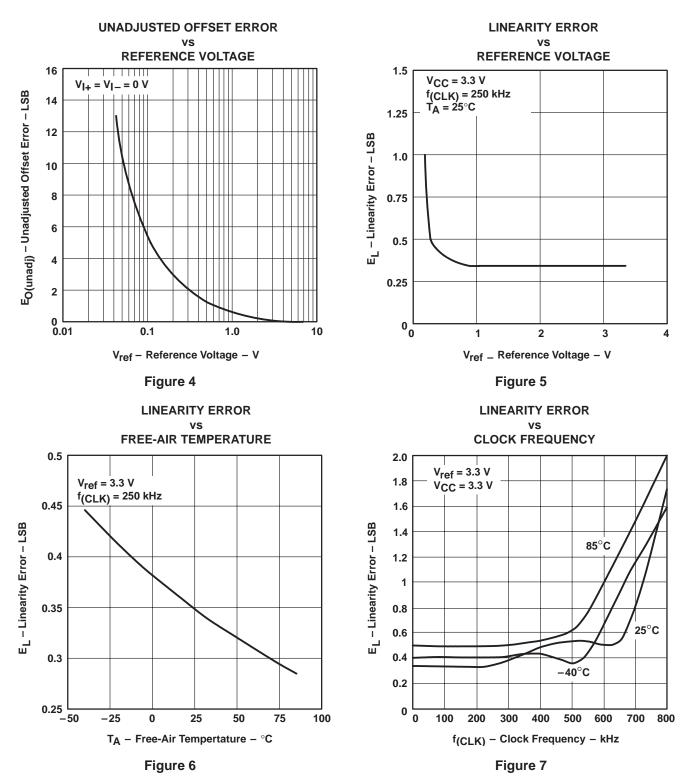

	PARAMETER		TEST CONDITIONS [†]	ΜΙΝ ΤΥ	P MAX	UNIT
	Supply-voltage variation error		V _{CC} = 3 V to 3.6 V	±1/*	6 ±1/4	LSB
	Total unadjusted error (see Note 5)		$V_{ref} = 3.3 V,$ T _A = MIN to MAX		±1	LSB
	Common-mode error		Differential mode	±1/*	6 ±1/4	LSB
L .	ropagation delay time, utput data after CLK↑	Cu = 100 pE	20	0 500	ns	
^t pd	(see Note 6)	LSB-first data	– C _L = 100 pF	٤	30 200	115
٠	Output disable time. DO ofter $\overline{\mathbf{OO}}^{\uparrow}$		$C_L = 10 \text{ pF}, \qquad R_L = 10 \text{ k}\Omega$	8	30 125	ns
^t dis	Output disable time, DO after \overline{CS}		$C_L = 100 \text{ pF}, R_L = 2 \text{ k}\Omega$		250	115
t _{conv}	Conversion time (multiplexer-addressing time not included)				8	clock periods


[†] All parameters are measured under open-loop conditions with zero common-mode input voltage. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTES: 5. Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors.

6. The MSB-first data is output directly from the comparator and, therefore, requires additional delay to allow for comparator response time. LSB-first data applies only to TLV0832.


Figure 1. TLV0832 Data-Input Timing

SLAS148 - SEPTEMBER 1996

TYPICAL CHARACTERISTICS

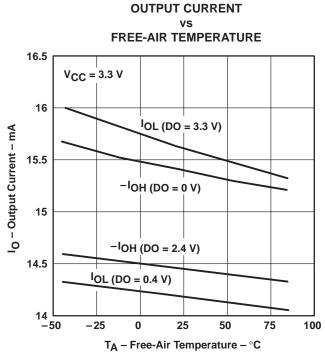
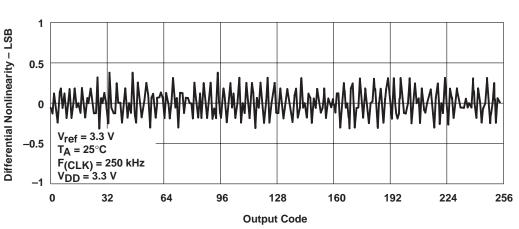
TEXAS

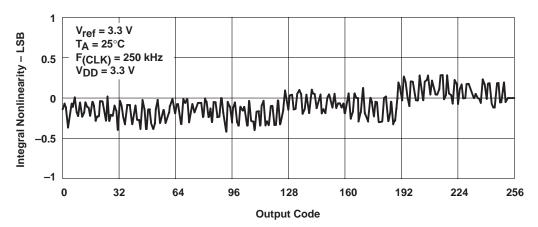
TLV0831 TLV0831 SUPPLY CURRENT SUPPLY CURRENT vs vs FREE-AIR TEMPERATURE **CLOCK FREQUENCY** 0.3 0.5 <u>f(C</u>LK) = 250 kHz V_{CC} = 3.3 V CS = High T_A = 25°C V_{CC} = 3.6 V 0.4 ICC - Supply Current - mA ICC – Supply Current – mA V_{CC} = 3.3 V 0.3 0.2 0.2 $V_{CC} = 3 V$ 0.1 0.1 0 -50 -25 0 25 50 75 100 0 100 200 300 400 500 T_A – Free-Air Temperature — °C f(CLK) - Clock Frequency - kHz

TYPICAL CHARACTERISTICS

Figure 8

Figure 9


Figure 10

TYPICAL CHARACTERISTICS

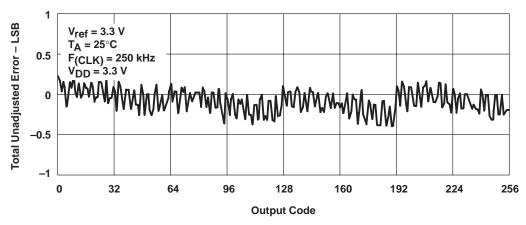


Figure 13. Total Unadjusted Error With Output Code

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated