

N-Channel Enhancement-Mode Vertical DMOS FETs

Ordering Information

BV _{DSS} /	R _{DS(ON)} (max)	I _{D(ON)} (min)	V _{GS(th)} (max)	Order Number / Package		
BV _{DGS}				TO-92	SOW-20*	
40V	0.75Ω	4.0A	1.6V	TN0604N3	_	
40V	1.0Ω	4.0A	1.6V	_	TN0604WG	

^{*} Same as SO-20 with 300 mil wide body.

Features

- Low threshold 1.6V max.
- High input impedance
- ☐ Low input capacitance 140pF typical
- Fast switching speeds
- Low on resistance
- Free from secondary breakdown
- Low input and output leakage
- Complementary N- and P-channel devices

Applications

- Logic level interfaces ideal for TTL and CMOS
- ☐ Solid state relays
- Battery operated systems
- Photo voltaic drives
- Analog switches
- General purpose line drivers
- Telecom switches

Absolute Maximum Ratings

Drain-to-Source Voltage	BV _{DSS}
Drain-to-Gate Voltage	BV _{DGS}
Gate-to-Source Voltage	± 20V
Operating and Storage Temperature	-55°C to +150°C
Soldering Temperature*	300°C

Distance of 1.6 mm from case for 10 seconds.

Low Threshold DMOS Technology

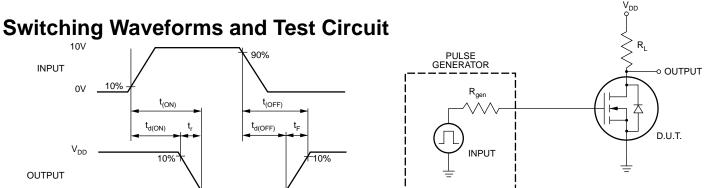
These low threshold enhancement-mode (normally-off) transistors utilize a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

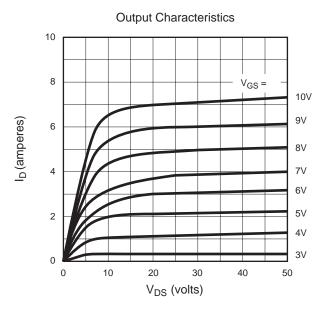
Package Options

Thermal Characteristics

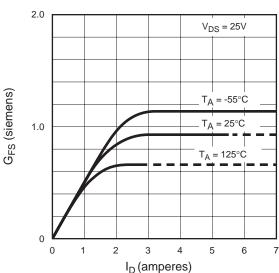
Package	I _D (continuous)*	I _D (pulsed)	Power Dissipation @ T _C = 25°C	$^{ heta_{ extsf{jc}}}$ $^{\circ}$ C/W	θ _{ja} °C/W	I _{DR} *	I _{DRM}
TO-92	700mA	4.6A	1W	125	170	700mA	4.6A
SOW-20	Refer to Enhancement Mode MOSFET Arrays Section.						

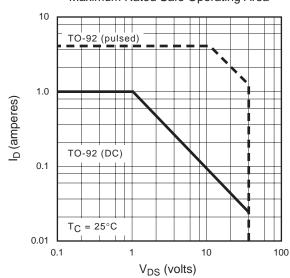

 $^{^*}$ I_D (continuous) is limited by max rated T_i.

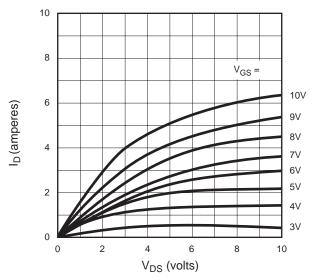
Electrical Characteristics (@ 25°C unless otherwise specified)

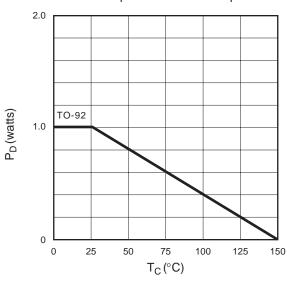

Symbol	Parameter		Min	Тур	Max	Unit	Conditions	
BV_{DSS}	Drain-to-Source Breakdown Voltage		40			V	$V_{GS} = 0V$, $I_D = 2.0$ mA	
$V_{GS(th)}$	Gate Threshold Voltage		0.6		1.6	V	$V_{GS} = V_{DS}$, $I_D = 1.0 \text{mA}$	
$\Delta V_{GS(th)}$	Change in V _{GS(th)} with Temperature			-3.8	-4.5	mV/°C	$V_{GS} = V_{DS}$, $I_D = 2.5 \text{mA}$	
I _{GSS}	Gate Body Leakage				100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$	
I _{DSS}	Zero Gate Voltage Drain Current				10	μΑ	$V_{GS} = 0V$, $V_{DS} = Max$ Rating	
					1.0	mA	$V_{GS} = 0V$, $V_{DS} = 0.8$ Max Rating $T_A = 125$ °C	
I _{D(ON)}	ON-State Drain Current		1.5	2.1			$V_{GS} = 5V, V_{DS} = 20V$	
			4.0	7.0		Α	V _{GS} = 10V, V _{DS} = 20V	
R _{DS(ON)}	Static Drain-to-Source ON-State Resistance	TO-92/SOW-20		1.0	1.6	Ω	$V_{GS} = 5V, I_D = 0.75A$	
		TO-92		0.6	0.75	Ω	V _{GS} = 10V, I _D = 1.5A	
		SOW - 20			1.0			
$\Delta R_{DS(ON)}$	Change in R _{DS(ON)} with Temperature			0.5	0.75	%/°C	V _{GS} = 10V, I _D = 1.5A	
G _{FS}	Forward Transconductance		0.5	0.8		Ω	V _{DS} = 20V, I _D = 1.5A	
C _{ISS}	Input Capacitance			140	190		$V_{GS} = 0V$, $V_{DS} = 20V$ f = 1 MHz	
C _{oss}	Common Source Output Capacitance			75	110	pF		
C _{RSS}	Reverse Transfer Capacitance			25	50			
t _{d(ON)}	Turn-ON Delay Time				10		V _{DD} = 20V	
t _r	Rise Time				6.0	ns	$I_{D} = 20V$ $I_{D} = 0.5A$ $R_{GEN} = 25\Omega$	
t _{d(OFF)}	Turn-OFF Delay Time				25	1		
t _f	Fall Time				20			
V_{SD}	Diode Forward Voltage Drop			1.2	1.8	V	$V_{GS} = 0V, I_{SD} = 1.5A$	
t _{rr}	Reverse Recovery Time			300		ns	$V_{GS} = 0V$, $I_{SD} = 1A$	

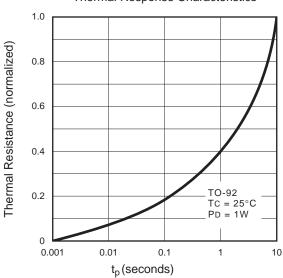

Notes

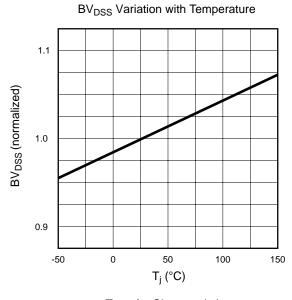

- 1: All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: $300\mu s$ pulse, 2% duty cycle.)
- 2: All A.C. parameters sample tested.

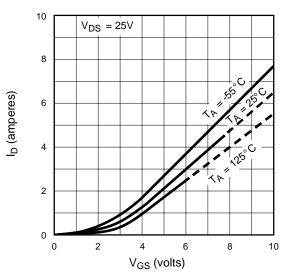

Typical Performance Curves

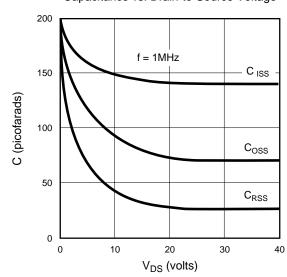


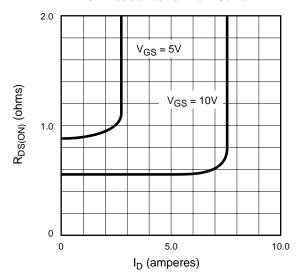

Maximum Rated Safe Operating Area

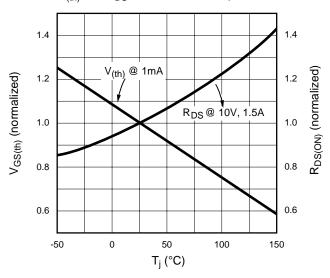

Saturation Characteristics

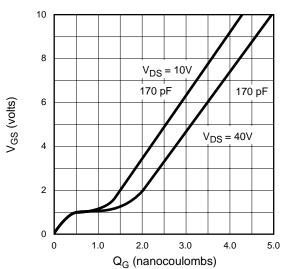

Power Dissipation vs. Case Temperature


Thermal Response Characteristics


Typical Performance Curves




Capacitance vs. Drain-to-Source Voltage


On-Resistance vs. Drain Current

V_(th) and R_{DS} Variation with Temperature

Gate Drive Dynamic Characteristics

02/06/02