## Ordering Information

| $\mathrm{BV}_{\text {DSS }} /$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BV $_{\text {DGS }}$ |

[^0]
## Features

－Low threshold－2．0V max．
－High input impedance
－Low input capacitance－125pF max．
－Fast switching speeds
－Low on resistance
－Free from secondary breakdown
－Low input and output leakage
－Complementary N －and P－channel devices

## Applications

－Logic level interfaces－ideal for TTL and CMOS
－Solid state relays
－Battery operated systems
－Photo voltaic drives
－Analog switches
－General purpose line drivers
－Telecom switches

| Absolute Maximum RatingS |  |
| :--- | ---: |
| Drain－to－Source Voltage | $\mathrm{BV}_{\mathrm{DSS}}$ |
| Drain－to－Gate Voltage | $\mathrm{BV}_{\mathrm{DGS}}$ |
| Gate－to－Source Voltage | $\pm 20 \mathrm{~V}$ |
| Operating and Storage Temperature | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Soldering Temperature＊ | $300^{\circ} \mathrm{C}$ |

＊Distance of $1.6-\mathrm{mm}$ from case for 10 seconds．

Product marking for TO－243AA

## TN5D＊

Where $*=2$－week alpha date code

## Low Threshold DMOS Technology

These low threshold enhancement－mode（normally－off）transis－ tors utilize a vertical DMOS structure and Supertex＇s well－proven silicon－gate manufacturing process．This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices．Characteristic of all MOS structures，these devices are free from thermal runaway and thermally induced secondary breakdown．
Supertex＇s vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage，high breakdown voltage，high input impedance，low input capacitance，and fast switching speeds are desired．

## Package Options



## Thermal Characteristics

| Package | $\mathbf{I}_{\mathbf{D}}$ (continuous) $^{*}$ | $\mathbf{I}_{\mathbf{D}}$ (pulsed) | Power Dissipation <br> $@ \mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$ | $\theta_{\mathrm{jc}}$ <br> ${ }^{\circ} \mathbf{C} / \mathbf{W}$ | $\theta_{\text {ia }}$ <br> ${ }^{\circ} \mathbf{C} / \mathbf{W}$ | $\mathbf{I}_{\mathbf{D R}}{ }^{*}$ | $\mathbf{I}_{\mathbf{D R M}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TO-92 | 175 mA | 2.0 A | 1.0 W | 125 | 170 | 175 mA | 2.0 A |
| TO-243AA | 260 mA | 1.8 A | $1.6 \mathrm{~W}^{\dagger}$ | 15 | $78^{\dagger}$ | 260 mA | 1.8 A |

* $I_{D}$ (continuous) is limited by max rated $T_{i}$.
${ }^{\dagger}$ Mounted on FR5 board, $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.57 \mathrm{~mm}$. Significant $P_{D}$ increase possible on ceramic substrate.


## Electrical Characteristics (@ $25^{\circ} \mathrm{C}$ unless otherwise specified)



Notes:

1. All D.C. parameters $100 \%$ tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: $300 \mu$ s pulse, $2 \%$ duty cycle.)
2. All A.C. parameters sample tested.

## Switching Waveforms and Test Circuit



## Typical Performance Curves



## Typical Performance Curves




[^0]:    ＊Same as SOT－89．Product supplied on 2000 piece carrier tape reels．
    ${ }^{\dagger}$ MIL visual screening available．

