December 1991

National Semiconductor

The TP5089 is a low threshold voltage, field-implanted, metal gate CMOS integrated circuit. It interfaces directly to a

standard telephone keypad and generates all dual tone mul-

ti-frequency pairs required in tone-dialing systems. The tone

synthesizers are locked to an on-chip reference oscillator

using an inexpensive 3.579545 MHz crystal for high tone

accuracy. The crystal and an output load resistor are the

only external components required for tone generation. A

MUTE OUT logic signal, which changes state when any key

TP5089 DTMF (TOUCH-TONE) Generator

General Description

is depressed, is also provided.

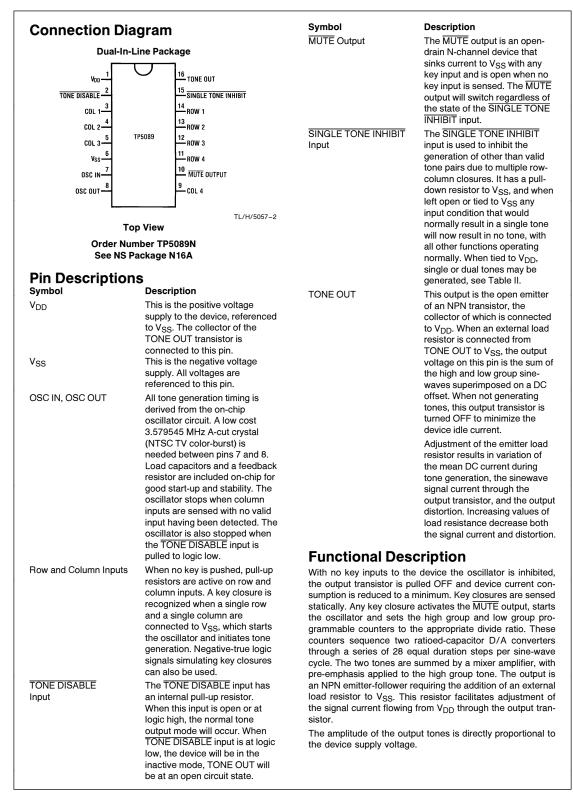
Features

- 3.5V-10V operation when generating tones
- 2V operation of keyscan and MUTE logic
- Static sensing of key closures or logic inputs
- On-chip 3.579545 MHz crystal-controlled oscillator
- Output amplitudes proportional to supply voltage
- High group pre-emphasis
- Low harmonic distortion
- Open emitter-follower low-impedance output
- SINGLE TONE INHIBIT pin

TP5089 DTMF(TOUCH-TONE) Generator Block Diagram TONE DISABLE OSC IN PROGRAMMABLE DIVIDER 3.579545 MHz OSC OUT JOHNSON COUNTER C1 C2 LOW GROUP D/A C3 KEY C4 SCAN AND DECODE TONE OUTPUT 23 A R1 HIGH GROUP D/A 56 В R2 4 R3 7 8 9 C **R4** # 0 D JOHNSON COUNTER Vss PROGRAMMABLE MUTE MUTE OUTPUT DIVIDER LOGIC SINGLE TONE TL/H/5057-1 FIGURE 1

© 1995 National Semiconductor Corporation TL/H/5057 RRD-B30M115/Printed in U. S. A.

Α	bso	lute	Maximum	Ratings
---	-----	------	---------	---------

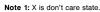

 Operating Temperature Storage Temperature Maximum Power Dissipation $\begin{array}{r} -30^\circ\text{C to }+60^\circ\text{C}\\ -55^\circ\text{C to }+150^\circ\text{C}\\ 500\text{ mW} \end{array}$

Electrical Characteristics Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{DD} = 3.5V$ to 10V, $T_A = 0^{\circ}C$ to $+60^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization.

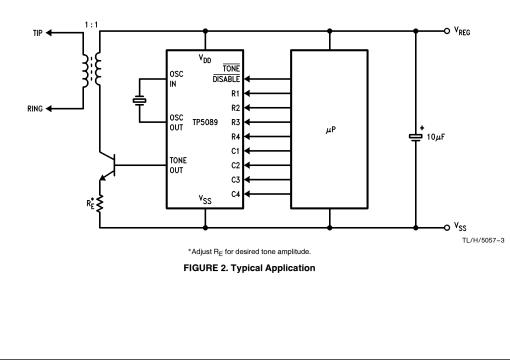
Parameter	Conditions	Min	Тур	Max	Units
Minimum Supply Voltage for Keysense and MUTE Logic Functions		2			v
Minimum Operating Voltage for generating tones		3.5			v
Operating Current Idle Generating Tones	Mute open $R_L = \infty$ $V_{DD} = 3.5V$		2 1.1	25 2.5	μA mA
Input Resistors COLUMN and ROW (Pull-Up) SINGLE TONE INHIBIT (Pull-Down) TONE DISABLE (Pull-Up)		25 120	50		kΩ kΩ
Input Low Level				0.2 V _{DD}	V
Input High Level		0.8 V _{DD}			V
MUTE OUT Sink Current (COLUMN and ROW Active)	$V_{DD} = 3.5V$ $V_0 = 0.5V$	0.4			mA
MUTE Out Leakage Current	$V_o = V_{DD}$		1		μΑ
Output Amplitude Low Group	$\begin{array}{l} R_L = 240 \; \Omega \\ V_{DD} = 3.5 V \end{array}$	190	250	340	mVrms
	$R_{L} = 240\Omega$ $V_{DD} = 10V$	510	700	880	mVrms
Output Amplitude High Group	$R_L = 240\Omega$ $V_{DD} = 3.5V$	270	340	470	mVrms
	$R_{L} = 240\Omega$ $V_{DD} = 10V$	735	955	1265	mVrms
Mean Output DC Offset	$V_{DD} = 3.5V$ $V_{DD} = 10V$		1.3 4.6		V V
High Group Pre-Emphasis		2.2	2.7	3.2	dB
Dual Tone/Total Harmonic Distortion Ratio	$V_{DD} = 4V, R_L = 240\Omega$ 1 MHz Bandwidth		-23	-22	dB
Start-Up Time (to 90% Amplitude)			3	5	mS

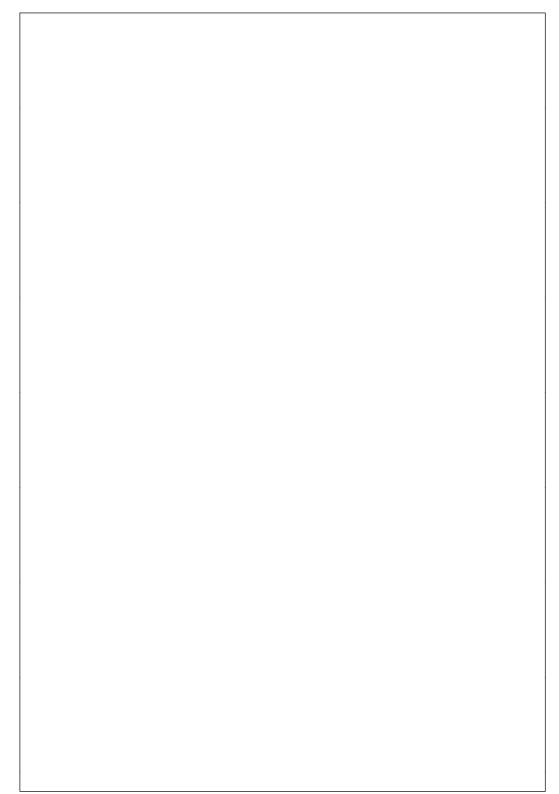
Note 1: R_L is the external load resistor connected from TONE OUT to V_{SS}.

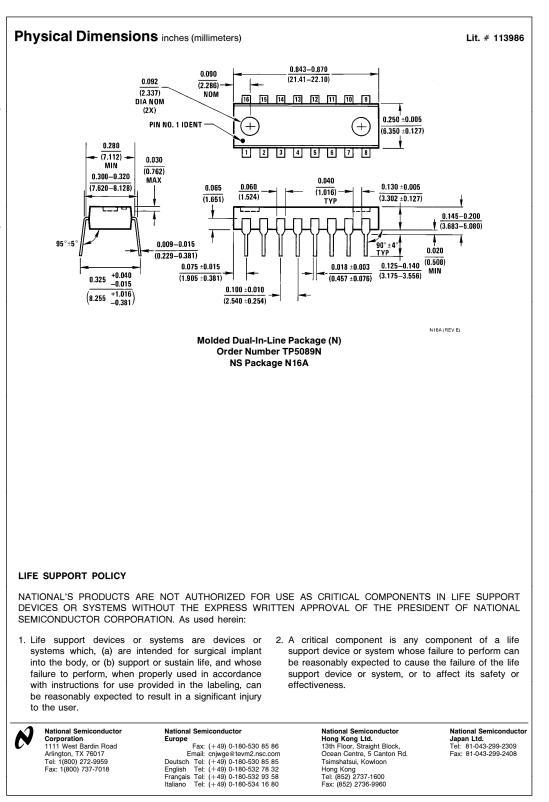
Note 2: Crystal specification: Parallel resonant 3.579545 MHz, R_S \leq 150 $\Omega,$ L = 100 mH, C_O = 5 pF, C_I = 0.02 pF.



Functional Description (Continued)


TABLE I. Output Frequency Accuracy						
Tone Group	Valid Input	Standard DTMF (Hz)	Tone Output Frequency	% Deviation from Standard		
Low	R1	697	694.8	-0.32		
Group	R2	770	770.1	+0.02		
fL	R3	852	852.4	+0.03		
	R4	941	940.0	-0.11		
High	C1	1209	1206.0	-0.24		
Group	C2	1336	1331.7	-0.32		
f _H	C3	1477	1486.5	+0.64		
	C4	1633	1639.0	+ 0.37		


TABLE I. Output Frequency Accuracy


SINGLE TONE	TONE	ROW	COLUMN	TONE OUT		MUTE
INHIBIT	DISABLE		00L0mm	Low	High	
Х	0	0/C	O/C	0V	0V	O/C
X	X	O/C	O/C	0V	0V	O/C
X	0	One	One	Vos	Vos	0
X	1	One	One	fL	f _H	0
1	1	2 or More	One	-	f _H	0
1	1	One	2 or More	fL	—	0
1	1	2 or More	2 or More	Vos	Vos	0
0	1	2 or More	One	Vos	Vos	0
0	1	One	2 or More	Vos	VOS	0
0	1	2 or More	2 or More	V _{OS}	Vos	0

Note 2: V_{OS} is the output offset voltage.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.