查询TP5510供应商

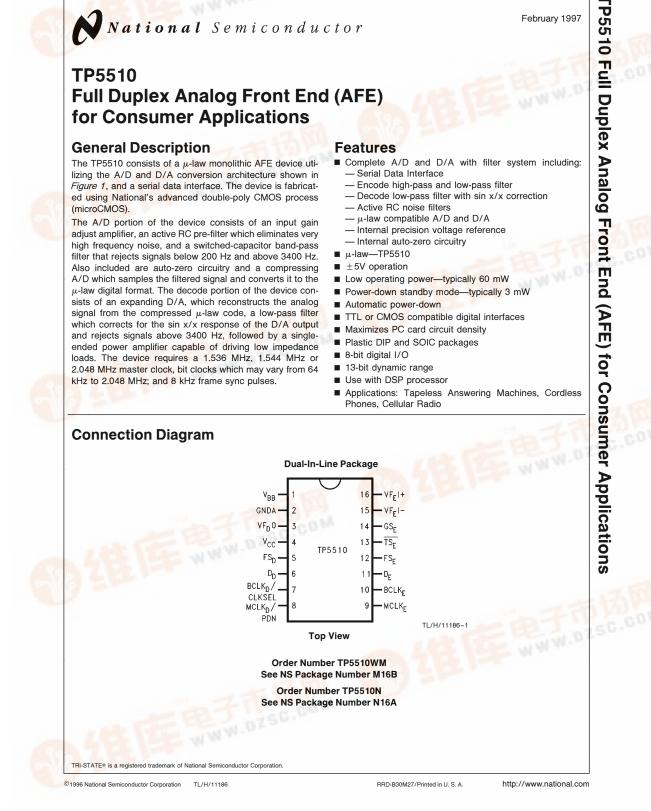
专业PCB打样工厂 ,24小时加急出货

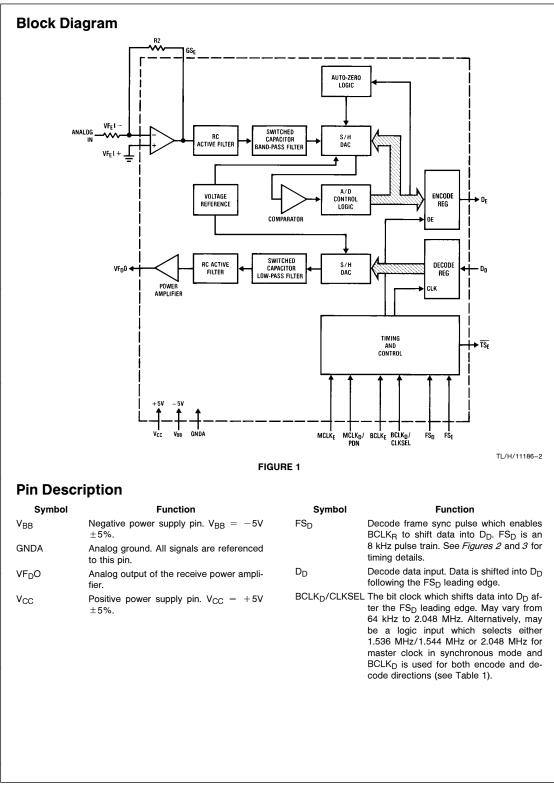
February 1997

National Semiconductor

TP5510 Full Duplex Analog Front End (AFE) for Consumer Applications

General Description


'sc.com


The TP5510 consists of a µ-law monolithic AFE device utilizing the A/D and D/A conversion architecture shown in Figure 1, and a serial data interface. The device is fabricated using National's advanced double-poly CMOS process (microCMOS).

The A/D portion of the device consists of an input gain adjust amplifier, an active RC pre-filter which eliminates very high frequency noise, and a switched-capacitor band-pass filter that rejects signals below 200 Hz and above 3400 Hz. Also included are auto-zero circuitry and a compressing A/D which samples the filtered signal and converts it to the μ -law digital format. The decode portion of the device consists of an expanding D/A, which reconstructs the analog signal from the compressed μ -law code, a low-pass filter which corrects for the sin x/x response of the D/A output and rejects signals above 3400 Hz, followed by a singleended power amplifier capable of driving low impedance loads. The device requires a 1.536 MHz, 1.544 MHz or 2.048 MHz master clock, bit clocks which may vary from 64 kHz to 2.048 MHz; and 8 kHz frame sync pulses.

Features

- Complete A/D and D/A with filter system including: Serial Data Interface
 - Encode high-pass and low-pass filter
 - Decode low-pass filter with sin x/x correction
 - Active RC noise filters
 - μ-law compatible A/D and D/A
 - Internal precision voltage reference
 - Internal auto-zero circuitry
- µ-law—TP5510
- ±5V operation
- Low operating power—typically 60 mW
- Power-down standby mode—typically 3 mW
- Automatic power-down
- TTL or CMOS compatible digital interfaces
- Maximizes PC card circuit density
- Plastic DIP and SOIC packages
- 8-bit digital I/O
- 13-bit dynamic range
- Use with DSP processor
- Applications: Tapeless Answering Machines, Cordless Phones, Cellular Radio

Pin Descr	iption (Continued)
Symbol	Function
MCLK _D /PDN	Encode master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be asynchronous with MCLK _E , but should be synchronous with MCLK _E for best performance. When MCLK _D is connected continuously low, MCLK _E is selected for all internal timing. When MCLK _D is connected continuously high, the device is powered down.
MCLKE	Encode master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be asynchronous with MCLK _D . Best performance is realized from synchronous operation.
FS _E	Encode frame sync pulse input which en- ables $BCLK_E$ to shift out the data on D_E . FS_E is an 8 kHz pulse train, see <i>Figures 2</i> and <i>3</i> for timing details.
BCLK _E	The bit clock which shifts out the data on D_E . May vary from 64 kHz to 2.048 MHz, but must be synchronous with MCLK _E .
D _E	The TRI-STATE [®] data output which is en- abled by FS _E .
TSE	Open drain output which pulses low during the A/D time slot.
GS _E	Analog output of the encode input amplifier. Used to externally set gain.
VF _E I ⁻	Inverting input of the encode input amplifier.
VF _E I+	Non-inverting input of the encode input amplifier.

Functional Description

POWER-UP

When power is first applied, power-on reset circuitry initializes the AFE and places it into a power-down state. All nonessential circuits are deactivated and the D_E and VF_DO outputs are put in high impedance states. To power-up the device, a logical low level or clock must be applied to the MCLK_D/PDN pin and FS_E and/or FS_D pulses must be present. Thus, 2 power-down control modes are available. The first is to pull the MCLK_D/PDN pin high; the alternative is to hold both FS_E and FS_D inputs continuously low—the device will power-down approximately 2 ms after the last FS_E or FS_D pulse. Power-up will occur on the first FS_E or FS_D pulse. The TRI-STATE data output, D_E, will remain in the high impedance state until the second FS_E pulse.

SYNCHRONOUS OPERATION

For synchronous operation, the same master clock and bit clock should be used for both the encode and decode directions. In this mode, a clock must be applied to $MCLK_E$ and the $MCLK_D/PDN$ pin can be used as a power-down control. A low level on $MCLK_D/PDN$ powers up the device and a high level powers down the device. In either case, $MCLK_E$ will be selected as the master clock for both the encode and decode circuits. A bit clock must also be applied to $BCLK_F$

and the BCLK_D/CLKSEL can be used to select the proper internal divider for a master clock of 1.536 MHz, 1.544 MHz or 2.048 MHz. For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame.

With a fixed level on the BCLK_D/CLKSEL pin, BCLK_E will be selected as the bit clock for both the encode and decode directions. Table 1 indicates the frequencies of operation which can be selected, depending on the state of BCLK_D/CLKSEL. In this synchronous mode, the bit clock, BCLK_E, may be from 64 kHz to 2.048 MHz, but must be synchronous with MCLK_E.

Each FS_E pulse begins the encoding cycle and the data from the previous encode cycle is shifted out of the enabled D_E output on the positive edge of BCLK_E. After 8-bit clock periods, the TRI-STATE D_E output is returned to a high impedance state. With an FS_D pulse, data is latched via the D_D input on the negative edge of BCLK_E (or BCLK_D if running). FS_E and FS_D must be synchronous with MCLK_{E/D}.

TABLE I. Selection of Master Clock Frequencies

BCLK _D /CLKSEL	Master Clock Frequency Selected TP5510
Clocked	1.536 MHz or 1.544 MHz
0	2.048 MHz
1	1.536 MHz or 1.544 MHz

ASYNCHRONOUS OPERATION

For asynchronous operation, separate encode and decode clocks may be applied. $MCLK_E$ and $MCLK_D$ must be 1.536 MHz or 1.544 MHz for the TP5510, and need not be synchronous. For best transmission performance, however, $MCLK_D$ should be synchronous with $MCLK_E$, which is easily achieved by applying only static logic levels to the $MCLK_D/PDN$ pin. This will automatically connect $MCLK_E$ to all internal $MCLK_D$ functions (see Pin Description). For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame. FS_E starts each A/D conversion cycle and must be synchronous with $MCLK_E$ and $BCLK_E$. FS_D starts each D/A conversion cycle and must be Synchronous with $BCLK_D$ must be a clock, the logic levels shown in Table 1 are not valid in asynchronous mode. $BCLK_E$ and $BCLK_D$ may operate from 64 kHz to 2.048 MHz.

SHORT FRAME SYNC OPERATION

The AFE can utilize either a short frame sync pulse or a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, both frame sync pulses, FS_E and FS_D, must be one bit clock period long, with timing relationships specified in *Figure 2*. With FS_E high during a falling edge of BCLK_E, the next rising edge of BCLK_E enables the D_E TRI-STATE output buffer, which will output the sign bit. The following seven rising edge disables the D_E output. With FS_D high during a falling edge disables the D_E output. With FS_D high during a falling edge of BCLK_E (BCLK_E in synchronous mode), the next falling edge of BCLK_E latches in the sign bit. The following seven falling

Functional Description (Continued)

edges latch in the seven remaining bits. Both devices may utilize the short frame sync pulse in synchronous or asynchronous operating mode.

LONG FRAME SYNC OPERATION

To use the long frame mode, both the frame sync pulses, FS_E and FS_D, must be three or more bit clock periods long, with timing relationships specified in Figure 3. Based on the transmit frame sync, FS_E, the AFE will sense whether short or long frame sync pulses are being used. For 64 kHz operation, the frame sync pulse must be kept low for a minimum of 160 ns. The D_E TRI-STATE output buffer is enabled with the rising edge of FS_E or the rising edge of $\mathsf{BCLK}_\mathsf{E},$ whichever comes later, and the first bit clocked out is the sign bit. The following seven BCLKE rising edges clock out the remaining seven bits. The DE output is disabled by the falling BCLKE edge following the eighth rising edge, or by FSE going low, whichever comes later. A rising edge on the decode frame sync pulse, FS_D, will cause the data at D_D to be latched in on the next eight falling edges of BCLKD (BCLKE in synchronous mode). Both devices may utilize the long frame sync pulse in synchronous or asynchronous mode.

ENCODE SECTION

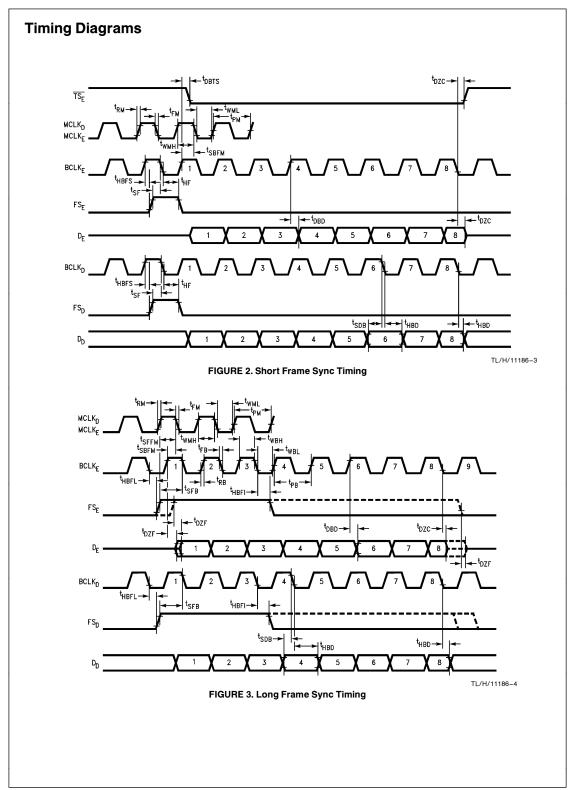
The encode section input is an operational amplifier with provision for gain adjustment using two external resistors, see *Figure 4*. The low noise and wide bandwidth allow gains in excess of 20 dB across the audio passband to be realized. The op amp drives a unity-gain filter consisting of RC active pre-filter, followed by an eighth order switched-ca-

pacitor bandpass filter clocked at 256 kHz. The output of this filter directly drives the A/D sample-and-hold circuit. The A/D is of compressing type according to μ -law coding conventions. A precision voltage reference is trimmed in manufacturing to provide an input overload (t_{MAX}) of nominally 2.5V peak (See Table of Transmission Characteristics). The FS_E frame sync pulse controls the sampling of the filter output, and then the successive-approximation encoding cycle begins. The 8-bit code is then loaded into a buffer and shifted out through D_E at the next FS_E pulse. The total encoding delay will be approximately 165 μ s (due to the encode filter) plus 125 μ s (due to encoding delay), which totals 290 μ s. Any offset voltage due to the filters or comparator is cancelled by sign bit integration.

DECODE SECTION

The decode section consists of an expanding DAC which drives a fifth order switched-capacitor low pass filter clocked at 256 kHz. The DAC is μ -law and the 5th order low pass filter corrects for the sin x/x attenuation due to the 8 kHz sample/hold. The filter is then followed by a 2nd order RC active post-filter/power amplifier capable of driving a 600 Ω load to a level of 7.2 dBm. The decode section is unity-gain. Upon the occurrence of FS_D, the data at the D_D input is clocked in on the falling edge of the next eight BCLK_D (BCLK_E) periods. At the end of the DAC time slot, the D/A conversion cycle begins, and 10 μ s later the DAC update) plus 110 μ s (filter delay) plus 62.5 μ s (1/2 frame), which gives approximately 180 μ s.

Absolute Maximum Ratings


If Military/Aerospace specifie please contact the National Office/Distributors for availabi	Semiconductor Sales
V _{CC} to GNDA	7V
V _{BB} to GNDA	-7V
Voltage at any Analog Input or Output	$V_{CC}\!+\!0.3V$ to $V_{BB}\!-\!0.3V$

Voltage at any Digital Input or Output	V _{CC} +0.3V to GNDA-0.3V
Operating Temperature Range	-25°C to + 125°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 1	10 seconds) 300°C
ESD (Human Body Model)	2000V
Latch-Up Immunity = 100 mA	on any Pin

Electrical Characteristics Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GNDA. Typicals specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIGITAL IN	ITERFACE					
V _{IL}	Input Low Voltage				0.6	V
V _{IH}	Input High Voltage		2.2			V
V _{OL}	Output Low Voltage	D_E , I_L = 3.2 mA SIG _D , I_L = 1.0 mA TS _E , I_L = 3.2 mA, Open Drain			0.4 0.4 0.4	V V V
V _{OH}	Output High Voltage	D_{E} , $I_{H} = -3.2 \text{ mA}$ SIG _D , $I_{H} = -1.0 \text{ mA}$	2.4 2.4			V V
Ι _{ΙL}	Input Low Current	GNDA≤V _{IN} ≤V _{IL} , All Digital Inputs	- 10		10	μA
I _{IH}	Input High Current	$V_{IH} \le V_{IN} \le V_{CC}$	- 10		10	μΑ
I _{OZ}	Output Current in High Impedance State (TRI-STATE)	D_E , GNDA \leq V $_O$ \leq V $_{CC}$	- 10		10	μΑ
ANALOG IN	NTERFACE WITH ENCODE INPUT AN	MPLIFIER (ALL DEVICES)				
I _I EA	Input Leakage Current	$-2.5V \le V \le +2.5V$, VF _E I ⁺ or VF _E I ⁻	-200		200	nA
R _I EA	Input Resistance	$-2.5V \le V \le +2.5V$, VF _E I ⁺ or VF _E I ⁻	10			MΩ
R _O EA	Output Resistance	Closed Loop, Unity Gain		1	3	Ω
R _L EA	Load Resistance	GS _E	10			kΩ
C _L EA	Load Capacitance	GS _E			50	pF
V _O EA	Output Dynamic Range	$GS_E, R_L \ge 10 \text{ k}\Omega$	- 2.8		2.8	V
A _V EA	Voltage Gain	VF _E I ⁺ to GS _E	5000			V/V
F _U EA	Unity Gain Bandwidth		1	2		MHz
V _{OS} EA	Offset Voltage		-20		20	mV
V _{CM} EA	Common-Mode Voltage	CMRREA > 60 dB	-2.5		2.5	V
CMRREA	Common-Mode Rejection Ratio	DC Test	60			dB
PSRREA	Power Supply Rejection Ratio	DC Test	60			dB
ANALOG IN	NTERFACE WITH DECODE FILTER (A	ALL DEVICES)				
R _O DF	Output Resistance	Pin VF _D O		1	3	Ω
R _L DF	Load Resistance	$VF_DO = \pm 2.5V$	600			Ω
C _L DF	Load Capacitance				500	pF
VOS _D O	Output DC Offset Voltage		-200		200	mV
POWER DI	SSIPATION (ALL DEVICES)					
I _{CC} 0	Power-Down Current	No Load (Note)		0.5	3	mA
I _{BB} 0	Power-Down Current	No Load (Note)		0.05	1	mA
I _{CC} 1	Power-Up Active Current	No Load		6.0	12	mA
I _{BB} 1	Power-Up Active Current	No Load		6.0	12	mA

Typicals		sts and/or product design and characteriza VV , $T_A = 25^{\circ}C$. All timing parameters are m section for test methods information.				
Symbol	Parameter	Conditions	Min	Тур	Max	Units
1/t _{PM}	Frequency of Master Clocks	Depends on the Device Used and the BCLK _D /CLKSEL Pin. MCLK _E and MCLK _D		1.536 1.544 2.048		MHz MHz MHz
t _{DM}	Rise Time of Master Clock	MCLK _E and MCLK _D			50	ns
t _{FM}	Fall Time of Master Clock	MCLK _E and MCLK _D			50	ns
t _{PB}	Period of Bit Clock		485	488	15725	ns
t _{DB}	Rise Time of Bit Clock	BCLK _E and BCLK _D			50	ns
t _{FB}	Fall Time of Bit Clock	BCLK _E and BCLK _D			50	ns
t _{WMH}	Width of Master Clock High	MCLK _E and MCLK _D	160			ns
t _{WML}	Width of Master Clock Low	MCLK _E and MCLK _D	160			ns
t _{SBFM}	Set-Up Time from BCLK _E High to MCLK _E Falling Edge	First Bit Clock after the Leading Edge of FS _E	100			ns
t _{SFFM}	Set-Up Time from FS_E High to MCLK _E Falling Edge	Long Frame Only	100			ns
t _{WBH}	Width of Bit Clock High	V _{IH} =2.2V	160			ns
t _{WBL}	Width of Bit Clock Low	V _{IL} =0.6V	160			ns
t _{HBFL}	Holding Time from Bit Clock Low to Frame Sync	Long Frame Only	0			ns
t _{HBFS}	Holding Time from Bit Clock High to Frame Sync	Short Frame Only	0			ns
t _{SFB}	Set-Up Time from Frame Sync to Bit Clock Low	Long Frame Only	115			ns
t _{DBD}	Delay Time from BCLK _E High to Data Valid	Load = 150 pF plus 2 LSTTL Loads	0		140	ns
t _{DBTS}	Delay Time to $\overline{TS_{E}}$ Low	Load = 150 pF plus 2 LSTTL Loads			140	ns
t _{DZC}	Delay Time from BCLK _E Low to Data Output Disabled	$C_L = 0 \text{ pF to } 150 \text{ pF}$	50		165	ns
t _{DZF}	Delay Time to Valid Data from FS _E or BCLK _E , Whichever Comes Later	$C_L = 0 \text{ pF to } 150 \text{ pF}$	20		165	ns
t _{SDB}	Set-Up Time from D_D Valid to BCLK _{D/E} Low		50			ns
t _{HBD}	Hold Time from $BCLK_{D/E}$ Low to D_D Invalid		50			ns
t _{SF}	Set-Up Time from $FS_{E/D}$ to BCLK _{E/D} Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	50			ns
t _{HF}	Hold Time from $BCLK_{E/D}$ Low to $FS_{E/D}$ Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	100			ns
t _{HBFI}	Hold Time from 3rd Period of Bit Clock Low to Frame Sync $(FS_E \text{ or } FS_D)$	Long Frame Sync Pulse (from 3 to 8 Bit Clock Periods Long)	100			ns
tWFL	Minimum Width of the Frame Sync Pulse (Low Level)	64k Bit/s Operating Mode	160			ns

1.02 kHz,	assured by correlation with other prod $V_{IN} = 0$ dBm0, encode input amplified $V, T_A = 25^{\circ}$ C.	er connected for unity gain non-inverting.				
Symbol	Parameter	Conditions	Min	Тур	Max	Unite
AMPLITU	DE RESPONSE					
	Absolute Levels (Definition of Nominal Gain)	Nominal 0 dBm0 Level is 4 dBm (600Ω) 0 dBm0		1.2276		Vrm
t _{MAX}	Max Overload Level	TP5510, (3.17 dBm0)		2.501		V _{PK}
G _{EA}	Encode Gain, Absolute	$T_A = 25^{\circ}C$, $V_{CC} = 5V$, $V_{BB} = -5V$ Input at $GS_E = 0$ dBm0 at 1020 Hz	-0.5		0.5	dB
G _{ER}	Encode Gain, Relative to G _{EA}	f = 16 Hz f = 50 Hz f = 60 Hz f = 200 Hz f = 300 Hz - 3000 Hz f = 3400 Hz f = 4000 Hz f = 4600 Hz and Up, Measure Response from 0 Hz to 4000 Hz	- 2.0 - 0.5 - 1.5		-35 -25 -21 -0.1 0.15 0.5 -10 -25	dB dB dB dB dB dB dB dB
G _{EAT}	Absolute Encode Gain Variation with Temperature	Relative to G _{EA}	-0.3		0.3	dB
G _{ERL}	Encode Gain Variations with Level	Sinusoidal Test Method Reference Level = -10 dBm0 VF _E I + = -40 dBm0 to $+3 \text{ dBm0}$ VF _E I + = -50 dBm0 to -40 dBm0	- 0.4 - 0.8		0.4 0.8	dB dB
G _{DA}	Decode Gain, Absolute	$T_A = 25^{\circ}C$, $V_{CC} = 5V$, $V_{BB} = -5V$ Input = Digital Code Sequence for 0 dBm0 Signal at 1020 Hz	-0.5		0.5	dB
G _{DR}	Decode Gain, Relative to G _{DA}	f=0 Hz to 3000 Hz f=3400 Hz f=4000 Hz	-0.5 -1.5		0.5 0.5 – 14	dB dB dB
G _{DAT}	Absolute Decode Gain Variation with Temperature	Relative to G _{DA}	-0.3		0.3	dB
G _{DAV}	Absolute Decode Gain Variation with Supply Voltage	Relative to G _{DA}	-0.05		0.05	dB
G _{DRL}	Decode Gain Variations with Level	Sinusoidal Test Method; Reference Input PCM Code Corresponds to an Ideally Encoded PCM Level = -40 dBm0 to + 3 dBm0 = -50 dBm0 to -40 dBm0 = -55 dBm0 to -50 dBm0	- 0.4 - 0.8 - 2.5		0.4 0.8 2.5	dB dB dB
V _{DO}	Decode Output Drive Level	$R_L = 600\Omega$	-2.5		2.5	v

Transmission Characteristics Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^\circ$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^\circ$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, encode input amplifier connected for unity gain non-inverting. Typicals specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, $T_A = 25^\circ$ C. (Continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
NOISE						
N _{EC}	Encode Noise, C Message Weighted	TP5510 (Note 1)		12	16	dBrnC0
N _{DC}	Decode Noise, C Message Weighted	Digital Code is Alternating Positive and Negative Zero —TP5510		8	11	dBrnC0
N _{DS}	Noise, Single Frequency	f=0 kHz to 100 kHz, Loop Around Measurement, $VF_EI^+=0$ Vrms			-53	dBm0
PPSRE	Positive Power Supply Rejection, Encode	$\begin{array}{l} {\sf VF_EI^+ = -50~dBm0} \\ {\sf V_{CC}\!=\!5.0~V_{DC}\!+100~mVrms} \\ {\sf f\!=\!0~kHz\!-\!50~kHz} \ ({\sf Note~2}) \end{array}$	-30			dBC
NPSRE	Negative Power Supply Rejection, Encode	$\label{eq:VFE} \begin{array}{l} VF_{E}I^{+} = -50 \mbox{ dBm0} \\ V_{BB} = -5.0 \mbox{ V}_{DC} + 100 \mbox{ mVrms} \\ f = 0 \mbox{ kHz} - 50 \mbox{ kHz} \mbox{ (Note 2)} \end{array}$	-30			dBC
PPSRD	Positive Power Supply Rejection, Decode	$\begin{array}{l} \mbox{PCM Code Equals Positive Zero} \\ V_{CC} = 5.0 \ V_{DC} + 100 \ mVrms \\ \mbox{Measure VF}_{D}0 \\ f = 0 \ Hz - 4000 \ Hz \\ f = 4 \ HZ - 50 \ Hz \end{array}$	30 30			dBC dB
NPSRD	Negative Power Supply Rejection, Decode	PCM Code Equals Positive Zero $V_{BB} = -5.0 V_{DC} + 100 \text{ mVrms}$ Measure VF _D 0 f = 0 Hz - 4000 Hz f = 4 kHz - 50 kHz	30 30			dBC dB

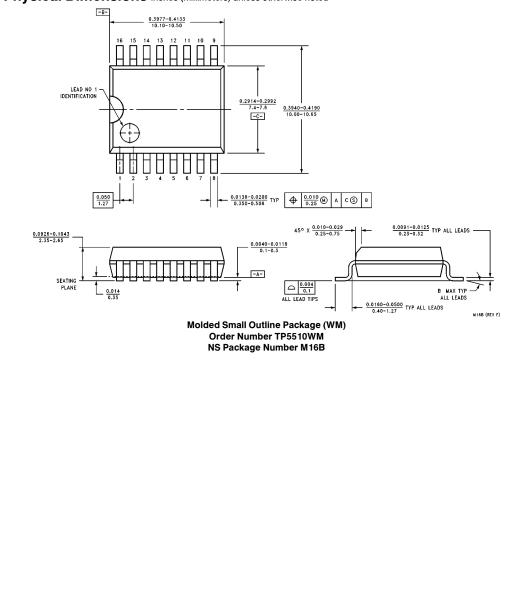
Transmission Characteristics Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, encode input amplifier connected for unity gain non-inverting. Typicals specified at $V_{CC} = 5.0V, V_{BB} = -5.0V, T_A = 25^{\circ}C$. (Continued)

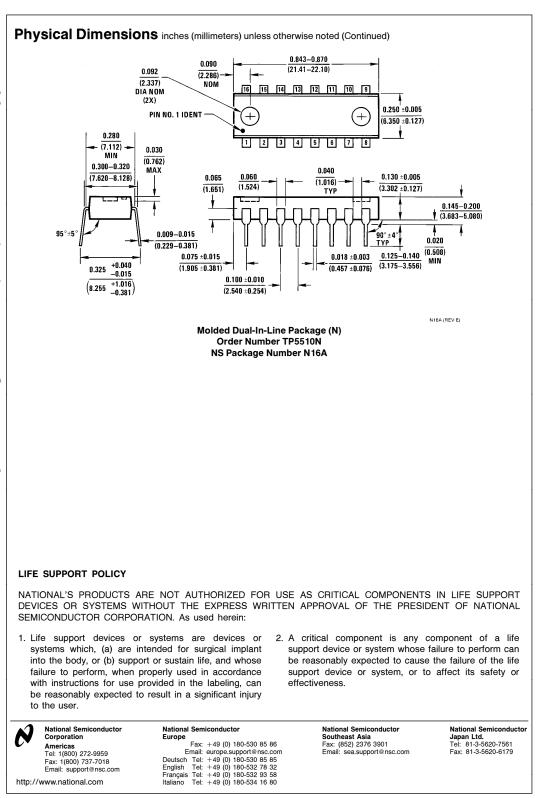
Symbol	Parameter		Conditions				Min	Т	ур	Max	Units
SOS	Spurious Out-of-Band Signals at the Channel Output	Loop Around Measurement, 0 dBm0, 300 Hz to 3400 Hz Input Digital Code Applied at D _D . 4600 Hz-7600 Hz 7600 Hz-8400 Hz 8400 Hz-100,000 Hz				ied				-30 -30 -30 -30	dB dB dB dB
DISTORTIC)N										
STD _E STD _D	Signal to Total Distortion Encode or Decode Half-Channel	Level = 3 = 0	I Test Method (Note .0 dBm0 dBm0 to -30 dBm0 -40 dBm0				28 30 25				dBC dBC dBC
SFDE	Single Frequency Distortion, Encode							- 41	dB		
SFD_D	Single Frequency Distortion, Decode									-41	dB
IMD	Intermodulation Distortion	Loop Around Measurement, $VF_{Encode}^+ = -4 \text{ dBm0 to} -21 \text{ dBm0, Two}$ Frequencies in the Range 300 Hz-3400 Hz			10				-35	dB	
CROSSTAL	.K										
CT _{E-D}	Encode to Decode Crosstalk, 0 dBm0 Encode Level	f=300 Hz-3400 Hz D _D =Quiet Code					_	- 90	-70	dB	
CT _{D-E}	Decode to Encode Crosstalk, 0 dBm0 Decode Level	f=300 Hz (Note 2)	-3400 Hz, VF _E I = M	ultiton	e			-	- 90	-70	dB
		Form	at at D _E Output								
						ΤΡ5 μ-L					
	V_{IN} (at GS_E) = + Full-Scale		1	0	0	0	0	0	0	0	
	V _{IN} (at GS _E)=0V		{1 0	1 1	1 1	1 1	1 1	1 1	1 1	1 1	
	V_{IN} (at GS _E) = -Full-Scale		0	0	0	0	0	0	0	0	

Applications Information

POWER SUPPLIES

While the pins of the AFE are well protected against electrical misuse, it is recommended but not mandatory that the standard CMOS practice be followed, ensuring that ground is connected to the device before any other connections are made. In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used.


All ground connections to each device should meet at a common point as close as possible to the GNDA pin. This


Physical Dimensions inches (millimeters) unless otherwise noted

minimizes the interaction of ground return currents flowing through a common bus impedance. 0.1 μF supply decoupling capacitors should be connected from this common ground point to V_{CC} and V_{BB}, as close to the device as possible.

For best performance, if more than 1 AFE is on a card, the ground point of each AFE on a card should be connected to a common card ground in star formation, rather than via a ground bus.

This common ground point should be decoupled to V_{CC} and V_{BB} with 10 μF capacitors.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.